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Asymmetric fluid criticality. II. Finite-size scaling for simulations
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The vapor-liquid critical behavior of intrinsically asymmetric fluids is studied in finite systems of linear
dimensionsL focusing on periodic boundary conditions, as appropriate for simulations. The recently pro-
pounded ‘‘complete’’ thermodynamic (L→`) scaling theory incorporating pressure mixing in the scaling
fields as well as corrections to scaling@Phys. Rev. E67, 061506~2003!# is extended to finiteL, initially in a
grand canonical representation. The theory allows for a Yang-Yang anomaly in which, whenL→`, the second
temperature derivative (d2ms /dT2) of the chemical potential along the phase boundaryms(T) diverges when
T→Tc2. The finite-size behavior of various specialcritical loci in the temperature-density or (T,r) plane, in
particular, the k-inflection susceptibility loci and theQ-maximal loci — derived from QL(T,^r&L)
[^m2&L

2/^m4&L wherem[r2^r&L — is carefully elucidated and shown to be of value in estimatingTc andrc .
Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model
electrolyte including an estimate of the correlation exponentn that confirms Ising-type character. The treatment
is extended to the canonical representation where further complications appear.

DOI: 10.1103/PhysRevE.68.041506 PACS number~s!: 64.70.Fx, 64.60.Fr, 05.70.Jk
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I. INTRODUCTION AND OVERVIEW

True phase transitions arise in statistical mechanics o
in the thermodynamic limit in which the volume of a syste
V[Ld ~in d dimensions!, and the number of particles in th
system,N, go to infinity, while the densityr5N/V remains
finite. In this limit, to be denoted for brevity simply byL
→`, the free energy and other quantities may exhibit sin
larities at a phase boundary or critical point as functions
the temperature or other thermodynamic fields. However,
finite systems as, in particular, realized in computer simu
tions, the free energy becomes analytic everywhere in
temperature and in other fields such as the chemical pote
m and the pressurep. Thus thermodynamic quantities th
vary discontinuously or diverge in the thermodynamic lim
become rounded whenL is finite.

Computer simulations have been useful in quantify
and gaining insights into phase transitions in various s
tems. Nevertheless, to obtain precise, sharp results f
simulations—inevitably performed on finite systems—o
must perform appropriate extrapolations on the sizeL of the
simulation ‘‘box.’’ Crucial questions then arise: How shou
one best estimate critical points from the finite-size da
And, especially: How can one reliably ascertain the criti
universality class of particular model systems?

To study the statistical mechanics of finite systems, o
must at the start address two basic issues, namely, the ov
geometry of the system and the specific nature of the bou
ary conditions. Here we will have in mind gener
d-dimensional systems with periodic boundary conditio
imposed on ‘‘rectangular’’ boxes of dimensionsL13L2
3•••3Ld5V5Ld in which the ratiosLk /L remain fixed
~typically at 1) whenL→`. Of course, this geometry com
bined with periodic boundary conditions has been used
tensively in computer simulations for studies of the bu
properties of fluids.

In the case of critical phenomena in systems with a w
definedaxis of symmetryin some thermodynamic plane, no
1063-651X/2003/68~4!/041506~23!/$20.00 68 0415
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tably model magnetic materials and analogous lattice ga
@1#, in which the critical density is trivially known and th
variation with (T2Tc) is of primary interest, the long-
established theory of finite-size scaling@2,3# and its subse-
quent developments@4–7# have provided effective answer
to many questions of how to extrapolate data for finite s
tems. However, two new issues that demand further con
eration have recently come to the fore. These are, first,
desire to obtain precise,unbiasedanswers for the universa
critical behavior of ‘‘complex’’ and, especially,asymmetric
fluid systems—in which, in particular,both the critical tem-
peratureTc and the critical densityrc must be accurately
estimated@8#—and, second, the realization that the existen
of a so-called Yang-Yang anomaly@9,10#—in which the
chemical potentialms(T) on the vapor-liquid phase bound
ary exhibits adivergent curvaturewhenT→Tc2—requires
a significant elaboration@9,11,12# of earlier formulations of
bulk, thermodynamic scaling for fluids@13,14#.

The appropriately extended, ‘‘complete’’ scaling formul
tion for bulk properties~i.e., in the thermodynamic limit! that
is needed to encompass a Yang-Yang anomaly@9# has re-
cently been carefully expounded and investigated in so
detail: first in Part I of this paper@11#, to be denoted here a
I , and, more fully, in the thesis@12# of the first author, which
will be referred to here asK . It proves necessary to ‘‘mix’’
the pressurep into the linear~and nonlinear! scaling fields
@9#. To be explicit, let us, followingI , introduce the dimen-
sionless deviations from the~bulk! critical point (pc ,Tc ,mc)
via

p̌5
p2pc

rckBTc
, t[

T2Tc

Tc
, m̌5

m2mc

kBTc
. ~1.1!

Then the three relevant scaling fields for a single-compon
fluid must, in general, take the forms

p̃5 p̌2k0t2 l 0m̌, ~1.2!
©2003 The American Physical Society06-1



ee

r

l-
a

n

r,

r

m

a
ie
a

-
in

m
e
al

in

te
s
. I

ry
an-

ci-

ic
The

e
of

ize
om
wl-
ef-
ters
s

-

ula

ion
o-
ist-
ap-
e
i-
ef-

de-
g

f
nce

me
ve

on
i-
i-
es

n:

Y. C. KIM AND M. E. FISHER PHYSICAL REVIEW E68, 041506 ~2003!
t̃ 5t2 l 1m̌2 j 1p̌, ~1.3!

h̃5m̌2k1t2 j 2p̌, ~1.4!

in which the quadratic and higher-order terms have b
dropped~seeI !. The crucial new feature~going beyond the
previously accepted analyses: see Refs.@13,14#! is the pres-
ence of the, in general, nonzero dimensionlesspressure-
mixing coefficients j1 and j 2: when these vanish the earlie
formulations are satisfactory.

In terms of the~nonlinear! scaling fields the general sca
ing hypothesis ofI asserts that the thermodynamics ne
criticality can be described, at least asymptotically, by

C~l22ap̃, l t̃ , lDh̃; l2u4u4 , l2u5u5 , . . . !50,
~1.5!

wherel is a free, positive scaling parameter. The expone
a ~for the specific heat! andD ~for the ordering fieldh̃) are
related to the other standard critical exponents via

D522a2b5b1g5bd, ~1.6!

while u4[u and u5 are thepositive leading even and odd
correction-to-scaling exponents for the correspondingirrel-
evant scaling fields,u4(p,T,m) and u5(p,T,m). One then
discovers@9,I ,K # that the scaling form~1.5! implies ~a! the
existence of a Yang-Yang anomaly in which (d2ms /dT2)
diverges as; j 2 /utua when t→0 and~b! a leading singular
term varying as; j 2utu2b in the coexistence curve diamete
which dominates the previously known term;( l 1
1 j 1)utu12a since, e.g.,b50.326 and a50.109 for d53
Ising-type criticality. Experimental evidence@15,16# cer-
tainly reveals the presence of singularities in the diamete
various systems; however, the available precision has so
prevented the unequivocal identification ofutu2b and utu12a

terms which, inevitably, also combine witht,t2, . . . terms,
etc. Beyond the appearance of autu2b term in the diameter,
pressure mixing induces further new, singular terms of si
lar character in other thermodynamic properties: seeI .

The task addressed here, in Sec. II, is to systematic
extend the general formulation for bulk scaling, as embod
in Eqs. ~1.1!–~1.5!, to finite systems characterized by
~single! finite length scaleL. According to the general prin
ciples of finite-size scaling, by which all lengths should,
the critical region, be scaled by the correlation length,j(T)
;1/utun, we may anticipate that, in effect, the scaling para
eter l in Eq. ~1.5! may, in a grand-canonical setting, b
replaced byL1/n. Let us also note that when, as for re
fluids, hyperscaling is valid~see Sec. II A! we have

dn522a. ~1.7!

It has, however, been pointed out@17# that the scaling
fields, p̃, t̃ , h̃, . . . , themselves may, in a finite system, ga
an explicit dependence on the sizeL. Thus finite-size effects
in a system confined by hard walls might well be domina
by 1/L contributions@5,18#. This issue, which is by no mean
definitively settled in general, is considered briefly in Sec
04150
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with the conclusion that for the case of periodic bounda
conditions, which is our main concern here, one should
ticipate additive terms in Eqs.~1.2!–~1.4!; specifically, then,
we will @settingl 0[1; seeI ~3.22!# adopt the scaling field

p̃~p,T,m;L !5 p̌2k0t2m̌2s0 /Ld̄1•••, ~1.8!

and likewise, with new coefficientss1 and s2, for
t̃ (p,T,m;L) andh̃(p,T,m;L), with d̄>2. ~Note that the co-
efficients s0 , s1, and s2 carry dimensions ofLd̄.! Fortu-
nately, it then transpires that theseL-dependent contributions
do not enter the leading behavior of the quantities of prin
pal interest, such as thek- andQ-loci in the (T,r) plane: see
below.

Specific predictions for the finite-size variation of bas
densities and susceptibilities are presented in Sec. II C.
variation withL of the chemical potentialm at the bulk criti-
cal temperatureand density is examined in Sec. II D: th
answer provides a route to uncovering the presence
L-dependent terms in the scaling fields as in Eq.~1.8!.

Now, as mentioned, an important application of finite-s
scaling theory is to analyze numerical data obtained fr
simulations on finite systems, and, thereby, to gain kno
edge of the critical properties of the bulk system. Major
forts have been devoted to estimating critical parame
such as (Tc ,rc) and to confirming universality classes. A
regards the estimation ofTc and rc , most studies have fo
cused on calculating the coexistence curve in the (r,T) plane
and then fitting the data with some suitably chosen form
in which Tc andrc appear.

However, simulations of a system in its two-phase reg
may require prohibitively long times or special, more elab
rate computational techniques to equilibrate the two coex
ing phases owing to the free-energy barrier that grows r
idly as T decreases andL increases. Moreover, since th
correlation lengthj(T,r) becomes large and eventually d
verges when the critical region is approached, finite-size
fects smear out the vapor and liquid states nearTc and blur
their distinction thereby seriously hampering the reliable
termination of the coexistence curve. Finally, field mixin
~even in the absence of pressure mixing! distorts the shape o
the diameter, etc. Consequently, naively fitting coexiste
curve data may yield quite poor values forTc andrc .

To meet these latter challenges, Bruce and Wilding so
time ago@19,20# proposed a rather convenient and effecti
finite-size scaling method for estimatingTc and rc , which,
in particular, incorporatesm̌ and t mixing into the scaling
fields t̃ and h̃ ~although pressure mixing isnot included!.
Their method, which has proved quite popular, is based
the hypothesis that fluid criticality belongs to the Ising un
versality class~or, more generally, to some well studied un
versality class for which certain detailed critical properti
are well established numerically!. On that basis their method
matches distribution functions of densityandenergy fluctua-
tions observed in simulations to the~presumed available!
limiting fixed point distributions as obtaineda priori from
simulations of simpler models~known to be of Ising or other
character!. In this way, following extrapolation onL, they
estimateTc andrc . However, significant questions remai
6-2
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What should be done whena priori knowledge of the~sus-
pected or, possibly, quite new! critical behavior of the system
of interest isnot available? How should one proceed if th
effects of pressure mixing maynot be negligible@21#?

In light of these serious issues, an important aim of o
studies has been to developunbiased finite-size scaling
methods for estimatingTc andrc without the need for such
strong assumptions and extensivea priori knowledge. For
this purpose, as previously reported@8,22,11#, various special
loci have been introduced that, in the thermodynamic lim
spring from the critical point in the density-temperature
other thermodynamic plane. The bulk scaling behavior
these critical loci was derived within the complete, scali
theory inI ~and also studied there within classical mean-fi
theory!. Among these loci, thek-loci—defined via the points
of isothermal maxima ofx (k)5x/rk in the (r,T) plane,
where x[r2kBTKT is the isothermal susceptibility—hav
already been used in simulations to estimate the crit
points of the hard-core square-well~HCSW! fluid @8#, and of
the restricted primitive model~RPM! electrolyte@22#. It is a
goal of the present paper to analyze the behavior of th
k-loci in systems offinite size: explicit expressions for
r (k)(T;L), thek-loci, in the (r,T) plane are obtained in Sec
III. Not surprisingly, one finds that the densityr
5r (k)(Tc ;L) evaluated on ak-locus at Tc ~where we sup-
pose thatTc has been estimated reliably in some other w!
approaches the critical densityrc whenL→`: But in what
manner?

We show in Sec. III A that there is a leading deviation
magnitudeL22b/n followed by a term of orderL2(12a)/n:
however, the amplitude of the leading contributionvanishes
when k takes an ‘‘optimal’’ valuekopt53Rm . In this result
Rm is the ~dimensionless! strength of the Yang-Yang
anomaly as defined in Ref.@9# and in I . Sec. III E. Extrapo-
lating data for the densitiesr (k)(Tc ;L) to the thermody-
namic limit can thus provideunbiased~bulk! estimates of the
critical density. In Sec. III B we reapply this approach to t
HCSW fluid using what we believe is an improved estim
for Tc : see below. Our new estimate forrc agrees well,
within the uncertainties, with the previous result@8#. As in-
dicated, this method for estimatingrc has also been succes
fully applied to the RPM electrolyte@22#.

Evidently, however, in locatingrc by this route, one first
needs a good estimate ofTc . For fluids with relatively weak
asymmetry, such as the hard-core square-well model, it
found @8# that the extrema in density of thek-loci themselves
provide fairly good estimators forTc that may be extrapo
lated inL. However, the whole critical region of the RPM
extremely asymmetric, in part, so it seems, because of
remarkably low value,rc* 5rca

3.0.08 @22#, of the reduced
critical density ~where a is the hard-core diameter!. As a
result, estimators forTc based on the availablek-loci prove
rather misleading: indeed, thek-loci for ‘‘near-optimal’’ val-
ues of k are observed to varynonmonotonically in
r—probably as a result of competition between the two le
ing contributions,Dr;(k2kopt)/L

2b/n and 1/L (12a)/n, men-
tioned above. To overcome this serious obstacle to progr
Luijten, Fisher, and Panagiotopoulos@22# introduced the
Q-loci which they defined by points of isothermal maxima
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the (r,T) plane of the inverse Binder parameter@23#

QL~T;^r&L!5
^m2&L

2

^m4&L

with m5r2^r&L , ~1.9!

where ^•&L denotes a grand-canonical ensemble averag
the finite system.

Now whenL→` anywhere in the one-phase region o
hasQL(T;r)→ 1

3 @23#, where, for brevity, we have replace
the argument̂ r&L in QL by r. On the other hand,at criti-
cality, QL(Tc ;rc) approaches a universal valueQc that is
close to 0.6236 for (d53)-dimensional Ising systems in
cubic box with periodic boundary conditions@24–26#. For
finite systems at fixedT near criticality, however, one find
thatQL exhibits rounded maxima that serve to provide we
defined loci,rQ(T;L) @22#. The behavior of theseQ-loci for
largeL is derived explicitly within the full finite-size scaling
theory in Sec. IV A. One might note that determining t
Q-loci involves calculation of the fourth density moment a
of its density derivative~i.e., the fifth moment! so that the
analysis requires some care. By the same token, in orde
obtain theQ-loci reliably via simulations, data of high qua
ity are needed. As for thek-loci, one may defineQ(k)-loci by
points of isothermal maxima in the (r,T) plane of a modified
Q parameter, namely,Q(k)[QL /rk. The behavior of these
loci is presented in Sec. IV B: we find that the dens
rQ

(k)(Tc ;L) evaluated atTc on these loci varies in leading
order asL22b/n with, as in thek-loci, a subsequentL2(12a)/n

term. However, the amplitude of the leading contributi
now vanishes whenk529Rm , in contrast tokopt53Rm for
thek-loci; thus the ‘‘optimal’’ value ofk for theQ(k)-loci has
the opposite sign.

Following Binder’s original approach forsymmetricsys-
tems@23#, Luijten et al. @22# examined plots of

QL
Q~T![QL„T;rQ~T;L !…, ~1.10!

i.e., QL evaluatedon theQ-loci rQ(T,L). For the RPM they
observed that the successive self-intersections asL increased,
say Tc

Q(L), converged rather rapidly to a precisely defin
value,T`—which thus served as a good estimate forTc . At
the same time, they found that the values ofQL

Q at the inter-
section points approached a limit that could be identified a
~surprisingly precise! estimate of the universal valueQc .
Thereby they established convincingly that the RPM~at least
within the z55 level of discretization they studied@22#! be-
longs to the short-range Ising universality class—despite
long-range Coulomb interactions in the model. We show h
that the approach of the estimators,Tc

Q(L), derived from the
QL

Q(T) plots toTc obeys a 1/L (11u)/n law, while the differ-
ence QL

Q
„Tc(L)…2Qc varies as L2u/n followed by a

j 2
2L22b/n term ~see Sec. V B!. Note that these results ar

independentof asymmetry or pressure mixing~in leading
order!.

In Sec. V A we develop the theory for this approach a
apply it to reestimateTc for the HCSW model@8#. The new
estimate is about 0.06% higher than the earlier value@8#; but
6-3
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that leads to no significant changes in the main conclus
reached previously: in particular, as noted above, the pr
ous estimate forrc remains unchanged~within the uncertain-
ties!.

On the other hand, in Sec. IV C we consider the behav
of QL(T;^r&L) for large L in the two-phase region benea
Tc . ~See also Rovere, Heermann, and Binder@27#.! We ex-
hibit plots for the HCSW fluid and RPM that illustrate som
striking features„and we correct a misleading expressi
given in Ref. @8# for the behavior ofQL(T;rL) with rL
5^r&L when L→` below Tc …. In Sec. IV D we go on to
discuss the explicit scaling form for the twominima of
QL(T;rL) that, whenT,Tc , approach the two sides of th
coexistence curve rather rapidly asL→`: see Figs. 8 and 9
below. It turns out that these considerations lead to an ap
ently very effective and systematic method of estimating
limiting coexistence curve width and diameter, namely,

Dr`~T![r1~T!2r2~T!, ~1.11!

r̄[rd~T!5 1
2 @r1~T!1r2~T!#, ~1.12!

wherer1(T)[r liq(T) andr2(T)[rvap(T) denote the true,
bulk liquid and vapor densities, respectively. This meth
which yields precise results surprisingly close toTc , has
been applied to the HCSW and RPM models; however,
details, which entail using the simulation data to genera
scaling function for the minima asT→Tc2, have been ex-
pounded elsewhere@28#.

The universality class of a particular system can be id
tified or checked and confirmed by determining critical e
ponentsa, b, etc. In Sec. V C we analyze further a meth
for estimating the correlation-length exponentn @8#. This
method has been applied to the HCSW fluid@8# and, more
recently, reported for the RPM electrolyte@22#. A thermody-
namic quantity for a finite system, sayPL(T), evaluated on
some suitable locus, sayr5rc , may exhibit a maximum a
T5Tc

P(L) which can be regarded as an effective finite-s
critical temperature. According to finite-size scaling one e
pectsTc

P(L) to approach the true critical temperatureTc as-
ymptotically asL21/n. We confirm that this conclusion su
vives pressure mixing~for suitable loci! and, by way of an
application, show that by examining a rather wide range
propertiesPL(T) for the RPM one can identify those fo
which the desired maxima approachTc from above. This is
important in practice because simulations above critica
are significantly less hampered by problems of full equilib
tion than those at or belowTc where two distinct putative
phases coexist and ‘‘alternate’’ in the simulation box. Con
quently, sufficientlyprecisecalculations ofTc

P(L) are rela-
tively easy which, in turn, provides a suitable basis for rob
extrapolation. In this way, we show that one can estimate
exponentn fairly accurately. For the RPM electrolyte~at the
z55 level of discretization! we find n50.6360.03 @22#
which supports the conclusion that the model belongs to
(d53)-dimensional Ising universality class@22#.

Both for gaining insight into experiments, in which th
densityr is most often a controlled variable, and, likewis
for simulations in which the particle numberN is fixed, it is
04150
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valuable to study the finite-size scaling behavior of ne
critical fluids in a canonical or (r,T) representation.
The bulk canonical free-energy densityf (r,T)
5 limL→`FN(V,T)/V, whereFN(V,T) is the Helmholtz free
energy, has a leading asymptotic scaling behavior near c
cality of the form

f ~r,T!' f 0~r,T!1Autu2(22a)X6~m/utub!, ~1.13!

in which f 0(r,T) is a smooth~generally analytical! back-
ground part of the free energy whilem[(r2rc)/rc . How-
ever, this simple scaling form does not incorporate any m
ing in the scaling fields. We may anticipate that up
incorporating the mixing of the scaling fields, the leadi
scaling behavior remains unchanged but with some mod
cations of the scaling variablesm and t. But what should be
expectedprecisely? That may well affect the behavior of th
corrections on various loci@29#. And what scaling form
should one obtain if, in particular, pressure mixing is intr
duced? In Sec. VI we derive explicit canonical scaling form
from the complete scaling formulation in the grand-canoni
representation. This is carried out first for the thermod
namic limit: then our finite-size results are applied to obta
corresponding canonical expressions. In Sec. VI B we d
cuss the definition of finite-size canonical critical points a
elucidate their behavior as illustrated by results for t
HCSW fluid and the RPM electrolyte@8,22#.

Finally, Sec. VII summarizes the paper briefly.

II. FULL FINITE-SIZE SCALING FORMULATION

Here we extend to finite systems near bulk critical poi
the complete scaling theory that incorporatespressure mixing
@11#.

A. Scaling functions and hyperuniversality

To extend the bulk scaling ansatz~1.5! to a finiteV5Ld

system we first replacep̃, h̃, t̃ ; u4 , u5 , . . . , bycorrespond-
ing finite-size nonlinear scaling field
p̃(p,T,m;L), . . . ; . . . , uj (p,T,m;L), . . . , of form ~1.8!,
etc., and choose an arbitrary fixed reference length, sayl * .
Settingl5(L/ l * )1/n in Eq. ~1.5! then leads to the genera
hypothesis

CXp̃S L

l *
D (22a)/n

, t̃ S L

l *
D 1/n

, h̃S L

l *
D D/n

; u4S l *
L D u4 /n

, . . . C
50, ~2.1!

which we expect to be at least asymptotically valid f
L/ l * →` as p̃, t̃ , andh̃→0.

Let us now restrict attention to dimensionalitiesd less
than the upper critical dimensionalityd. (54 for normal
fluid criticality!. Then thehyperuniversality exponent rela
tion, supported by renormalization group~RG! theory ~for a
fixed point without dangerous irrelevant variables@30#! dic-
tates (22a)/n5d @see Eq.~1.7!# and we may solve Eq
~2.1! for p̃ to obtain

rc p̃~p,T,m;L !5L2dY~xL ,yL ;yL4 , . . . !, ~2.2!
6-4
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where we have introduced the dimensionless scaled varia

xL5DL t̃L1/n, yL5ULh̃LD/n,

yLk5ULkL
2uk /n ~k54, 5, . . .!. ~2.3!

Here DL , UL , andULk}uk are nonuniversal metrical fac-
tors, of dimensionsl

*
21/n , l

*
2D/n , l

*
uk /n , respectively, which

depend on the system under study.
By construction~note the factorrc.0) the scaling func-

tion Y(x,y;y4 , . . . ) isdimensionless@31#. However, thehy-
peruniversality scaling hypothesis@32# ~supported by various
exact calculations@32–34#, simulations@35#, and RG theory
@24#! tells us thatY(x,y;y4 , . . . ) is auniversal functionof
its ~appropriately normalized! arguments. Note, howeve
that Y(x,y;y4 , . . . ) must depend on thegeometryof the
finite systemandon theboundary conditionsimposed; but it
will not depend on any microscopic details beyond those
determine the bulk universality class of the relevant criti
point. Furthermore,Y must be even under change of sign
the odd scaling variables, y⇔2y, y5⇔2y5 , . . . .

The bulk limit may be obtained formally by settingL
51/uDL t̃ un and lettingL→` ~when it drops out of the non
linear scaling fieldsp̃, t̃ , . . . ). This yields the scaling form
I ~2.3!, namely,

p̃5Qu t̃ u22aW6~y;y4 ,y5 , . . . !, ~2.4!

with the identificationQ5uDLu22a/rc , which is, thus, a di-
mensionless nonuniversal amplitude, while

W6~y;y4 , . . . !5Y~61,y;y4 , . . . ! ~2.5!

is universal with the amplitudes inI ~2.1! and I ~2.2! related
by U5UL /uDLuD, Uk5ULkuDLuuk (k54, 5, . . . ).

In contrast to the bulk scaling function, the finite-si
function Y(x,y;y4 , . . . ) must be analytic in the vicinity of
the origin since all critical singularities will be rounded in
finite system. FollowingI we may thus expand for largeL in
powers of the irrelevant variables to obtain

Y~xL ,yL ; . . . !5Y0~xL ,yL!1(
k

Yk~xL ,yL!y[ k] , ~2.6!

where, as in I , the multi-index k is defined by
k 5(4),(5), . . . ,(4,4),(4,5),. . . ,(4,4,4),. . . , while
y[ i , j , . . . ,n] meansyLiyL j•••yLn . The underlying symmetry
of the scaling functionY(xL ,yL ; . . . ) which is evidenced by
exact results and RG theory, then requires

Yk~xL ,2yL!56Yk~xL ,yL!, ~2.7!

for k even or odd in the sense ofI ~2.7!. Thence we have the
expansions

Yk~xL ,yL!5Y00
k 1Y10

k xL1Y20
k xL

21Y02
k yL

21•••,

5yL~Y01
k 1Y11

k xL1Y21
k xL

21Y03
k yL

21••• !, ~2.8!
04150
les

at
l

for k, even and odd, respectively, where the expansion c
ficientsYi j

k are universal numbers.
For our present purposes the leading approximation

Y'Y0~xL ,yL!1yL4
c Y(4)~xL ,yL!1yL5

c Y(5)~xL ,yL!, ~2.9!

in which UL4 andUL5 in the definitions ofyL4 andyL5 have
been replaced by their critical-point values, will amply su
fice.

B. Finite-size corrections to the scaling fields

In this section we discuss in a little more detail the qu
tion of finite-size corrections to the scaling fields that w
touched on in the Introduction. This issue seems to h
been first raised in Ref.@17# but to have escaped much mo
extensive or systematic discussion. Here we consider on
d-dimensional hypercube with periodic boundary conditio

A field-theoretic RG approach to finite-size scaling w
initiated by Brézin @36#. Later, with Zinn-Justin@24# system-
atic calculations of the scaling functions were presented
ing bothd542e andd521e expansions. In particular, th

shift of Tc that enters the scaling variablet̃ of the universal
scaling functions was computed: see Ref.@24# Eqs. ~3.20!

and~3.32!. Indeed,t̃ as calculated in Eq.~3.21! of Ref. @24#
contains finite-size corrections that, in leading order, vary

L22. A similar form for t̃ was obtained by Korutcheva an
Tonchev@37# for a finite system with long-range interaction
decaying as 1/r d1222s, s→01. Recently, Chen and Dohm
@38# calculated the finite-size free-energy density of
O(n) w4 field theory confined in a hypercube with period
boundary conditions: they used asharpcutoff in k space and
obtained a nonuniversalL22 contribution that dominated a
universal scaling part that varied asL2d.

On the other hand, Jasnow and co-workers@34,39# con-
cluded via RG theory that the system sizeL doesnot enter in
the formation of the scaling fields: see, especially Ref.@34#
Sec. III. Likewise Zinn-Justin@7, page 778# argues that:
‘‘The crucial observation which explains finite-size scaling
that the renormalization theory which leads to RG equati
is completelyinsensitive to finite size effectssince renormal-
izations are entirely due toshort distance singularities. As a
consequence RG equations are not modified.. . . . ’’ Never-
theless, in our assessment it remains uncertain whethe
not, even in the simplest case of periodic boundary con
tions, the system size affects the scaling fields. While furt
careful analyses may settle the issue convincingly, we

justified in allowing for anL2d̄ leading contribution in all
the scaling fields—as embodied in Eq.~1.8!; however, it

seems safe to assume thatd̄>2. As mentioned in the Intro-
duction, we then find in most cases that these corrections
less important, whenL becomes large, than those arisin
from field mixing and the leading irrelevant variables.
6-5
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C. Some basic thermodynamic properties

The generalized number and entropy ‘‘scaling’’ densiti
r̃ and s̃, introduced inI play a significant role also in ana
lyzing finite systems: they are defined by

r̃[~] p̃/]h̃! t̃ , s̃[~] p̃/] t̃ ! h̃ . ~2.10!

From Eqs.~2.2! and ~2.3!, we obtain@31#

rcr̃5ULL2b/n~]yY!, rcs̃5DLL2(12a)/n~]xY!,

~2.11!

where, here and below, we adopt the notations (]xY)
[(]Y/]xL)yL

, etc.
Now recall the definitionsI ~2.14! of the ‘‘true’’ reduced

number and entropy densities, namely,

ř[
r

rc
5S ] p̌

]m̌
D

t

, š5
S

rckB
5S ] p̌

]t
D

m

. ~2.12!

Following I ~2.16!–~2.19! these may be expressed in terms
the generalized, scaling densities. Thus we find

ř5 l 01~2q01 l 0n0!m̌1~n012l 0m0! p̌1~v01 l 0n3!t

1~12 j 2l 0!r̃2~ l 11 j 1l 0!s̃

1 j 2~ j 2l 021!r̃ 21O~ r̃ s̃,s̃ 2!, ~2.13!

where q0 , n0 , m0 , v0 , n3, etc., are the quadratic mixin
coefficients entering the full nonlinear scaling fields: s
I ~1.4!–~1.6!; in addition, one discovers that the finite-siz
L2d̄ correction terms in the scaling fields—see Eq.~1.8!—
enter only with the quadratic mixing coefficients. Likewis
we obtain

š5k01~v01k0n0!m̌1~n312k0m0!p̌1~2r 01k0n3!t

2~k11 j 2k0!r̃1~12 j 1k0!s̃1O~ r̃2,r̃ s̃,s̃ 2!, ~2.14!

where, again, we have retained only the leading te
needed later: further terms are given inK ~4.29!–~4.30!.

Similarly, the generalized susceptibilities defined
I ~2.28! are useful here: one finds

x̃hh[~]2p̃/]h̃2! t̃5UL
2Lg/n~]y

2Y!/rc , ~2.15!

and likewise forx̃ht andx̃ tt . The basic number fluctuation o
reduced susceptibility x̌NN5(]2p̌/]m̌2) t can then—see
I ~2.29! andK ~4.33! and Appendix F—be expressed as

rcx̌NN5e1
2UL

2Lg/n~]y
2Y!23 j 2e1UL

3L (g2b)/n~]y
2Y!~]yY!/rc

22e1e3ULDLL (12b)/n~]x]yY!1•••, ~2.16!
04150
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where only the leading terms have been displayed while
constants are

e1512 j 2 , e35 l 11 j 1 ~ l 051!; ~2.17!

see I ~2.30! and I ~3.22!. This result is needed to study th
k-loci in finite systems: see Sec. III A. TheQ-loci, taken up
in Sec. IV A, demand the higher-order analogs.

D. Chemical potential at „Tc , rc…

Before turning to the various critical loci and their finite
size behavior, we address a rather special question w
turns out to be interesting, since its answer, as mentione
the Introduction, opens an opportunity to determine via p
cise simulations the presence or absence of finite-size de
dence in the scaling fields. In a finite grand canonical
semble at temperatureT the chemical potentialm must be
adjusted to achieve a specified density: but the resul
value will depend onL. Accordingly we ask: ‘‘How does the
finite-size chemical potential, saymL

c[mL(Tc ,rc), needed to
achieve the bulk critical densityrc at the critical temperature
Tc approachm`

c [mc?’’
To attack the problem we first determine the scaling fie

at T5Tc andr5rc , i.e., t50 andř5 řc51. Recalling that
l 051 @I ~3.22!#, the relation~2.13! for the densityř then
yields

05~12 j 2!r̃2~ l 11 j 1!s̃2 j 2~12 j 2!r̃21•••, ~2.18!

where we have neglected the ‘‘background’’ terms inm̌ and
p̌ ~arising from the quadratic mixing coefficients! and may
check later that they yield only higher-order correction
@Note that s̃;L2(12a)/n dominatesL2d̄ since d̄>2.(1
2a)/n.# By appealing to Eq.~2.11! and the scaling function
expansions~2.9! and ~2.8! this can be reexpressed as

2~12 j 2!UL@Y02
0 1Y02

(4)yL4
c 1•••#yL

2~ l 11 j 1!DLL (b211a)/n@Y10
0 1•••#'0. ~2.19!

From the definitions~2.3! of yL and yLk we thus find that
whenr5rc at t50 the ordering field obeys

h̃'am /L (12a1g)/n5am /Ld1(g21)/n, ~2.20!

where the omitted correction factor includesL2u4 /n and
L21/n1d2d̄ as leading contributions, while

am5~ l 11 j 1!DLY10
0 /2~12 j 2!UL

2Y02
0 . ~2.21!

Note also that even in the absence of pressure mixing~i.e.,
j 15 j 250) the contribution ofm to t̃ , via l 1Þ0, ensures that
h̃ does not vanish~as it would identically in a symmetric
6-6
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system!; instead h̃ decays with a leading exponentd1
(g21)/n of a value about 3.38 for thed53 Ising universal-
ity class.

Finally, at t50, relation~1.4! for m̃ with the added term
2s2 /Ld̄, and Eq.~1.8!, lead, in linear order, to

m̌5h̃1 j 2p̌1s2 /Ld̄

5h̃1 j 2~ p̃1m̌1s0 /Ld̄!1s2 /Ld̄. ~2.22!

On using Eq.~2.2! for p̃ at xL'yL'0 this may be solved to
yield

m̌L
c[@m~Tc ,rc ;L !2mc#/kBTc ,

5aL /Ld̄1ap /Ld1am /~12 j 2!Ld1(g21)/n1•••,

~2.23!

where the new amplitudes are

aL5~s21 j 2s0!/~12 j 2!, ap5 j 2Y00
0 /rc~12 j 2!.

~2.24!

Evidently, if d̄,d and j 2s0 and s2 do not both vanish, the
dominant behavior arises from theL dependence of the sca
ing fields. If pressure mixing is absent~or negligible! the
last, most rapidly decaying term in Eq.~2.23! will be con-
trolling.

III. MODIFIED-SUSCEPTIBILITY LOCI
IN FINITE SYSTEMS

A. Asymptotic expressions

The k-modified-susceptibility loci or, for brevity, the
k-loci are defined by the isothermal maxima ofx (k)[x/rk

and so satisfyI ~4.32!, namely,

ř~]x̌NN /]m̌!T5k~ x̌NN!2. ~3.1!

We aim to solve this equation asymptotically near criticali
first, to obtain m̌ (k)(t;L), i.e., the finite-sizek-loci in the
(m,T) plane, thenp̌(k)(t;L), and, finally,ř (k)(t;L), the locus
in the (r,T) plane which is of most practical interest.

The required third-order susceptibility x̌N3

[(]x̌NN /]m̌)T can be obtained by differentiating Eq.~2.16!
with respect tom̌ at fixed t. This entails the derivatives

~]xL /]m̌!T5DLL1/n~2 l 12 j 1ř1••• !, ~3.2!

~]yL /]m̌!T5ULLD/n~12 j 2ř1••• !, ~3.3!

which follow from Eqs.~2.3!, ~1.3!, ~1.4!, and ~2.12!. On
using Eq.~2.13! for ř this leads to
04150
,

rcx̌N35e1
3UL

3L (g1D)/n~]y
3Y!2 j 2e1

3rc
21UL

4L2g/n

3@4~]y
3Y!~]yY!13~]y

2Y!2#

23e1
2e3UL

2DLL (g11)/n~]x]y
2Y!1•••, ~3.4!

where we recall Eq.~2.17! for e1 ande3. Using the expan-
sions ~2.6! and then Eq.~2.8!, for the scaling functions
Yk(xL ,yL), yields, after some algebra, the defining equat
~3.1! in the form

@24e1Y04
0 124e1Y14

0 xL124e1UL4
c Y04

(4)L2u/n#yL

2~3 j 21ke1!e1rc
21ULL2b/n@2Y02

0 12Y12
0 xL1•••#2

23e3~DL /UL!L (12D)/n@2Y12
0 12Y22

0 xL1•••#

1•••50. ~3.5!

With the aid of Eq.~2.3! the scaling fieldh̃ can hence be
written in terms ofL and t̃ as

h̃5 1
24 ~3 j 21ke1!/rcY04

0 L (22a)/n@2Y02
0 12Y12

0 DL t̃L1/n

12UL4
c Y02

(4)L2u/n1•••#22UL4
c Y04

(4)h̃/Y04
0 Lu/n1•••.

~3.6!

In order to solve this equation form̌ as a function ofL and
t, we first write p̌ in terms of m̌, t, and L by using the
finite-size scaling equation~2.2!. Expansions ~2.8! for
Y(xL , . . . ) canthen be employed and on solving iterative
for p̌ we obtain

rcp̌5rc~k0t1m̌1s0L2d̄1••• !1Y00
0 L2(22a)/n

1DLY10
0 @~12 j 1k0!t2~ l 11 j 1!m̌#L2(12a)/n

1UL4
c Y00

(4)L2(22a1u)/n1•••. ~3.7!

Rewriting Eq.~3.6! yields the reduced chemical potentialm̌

in a similar form from whichp̌ may be eliminated using Eq
~3.7!. Solving form̌ iteratively as a function oft andL finally
yields the finite-sizek-loci in the (m,T) plane as

m̌ (k)~ t;L !5@m (k)~T;L !2mc#/kBTc

5m̌1
(k)t1~s21 j 2s0!L2d̄1M1

(k)L2(22a)/n

1M2
(k)L2(22a1u)/n1M3

(k)tL2(12a)/n1•••,

~3.8!

where theM j
(k) vary linearly withk and are given explicitly

in K ~4.53! and K ~4.54! while m̌1
(k)5(k11 j 2k0)/(12 j 2) is

actually independentof k and equal tom̌s,1 which was de-
fined in I ~3.16! as the~reduced! slope of the phase boundar
ms(T) at T5Tc . Notice that, owing to the hyperscaling re
6-7
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lation, the L2d̄ term here dominates the universal scali
contribution,L2(22a)/n5L2d, whend̄,d.

Substituting Eq.~3.8! in Eq. ~3.7! yields thek-loci in the
(p,T) plane as

p̌(k)~ t;L !5@p(k)~T;L !2pc#/rckBTc

5 p̌1
(k)t1@~11 j 2!s01s2#L2d̄

1~M1
(k)1Y00

0 !L2(22a)/n

1~M2
(k)1UL4

c Y00
(4)!L2(22a1u)/n

1~M3
(k)1DLY10

0 t!tL2(12a)/n1•••, ~3.9!

where p̌1
(k)5k01m̌1

(k) is also independent ofk and equal to

p̌s,1 @ seeI ~3.12!# while

t 512 j 1k02~ l 11 j 1!~k11 j 2k0!/~12 j 2!, ~3.10!

which, in fact, has the same value ast in I ~3.14!.
To obtain thek-loci in the (r,T) plane, we now substitute

Eqs.~3.8! and ~3.9! into the scaling fieldsh̃ and t̃ to find

yL5 1
6 ~3 j 21ke1!UL~Y02

0 !2/Y04
0 Lb/n@112UL4

c Y02
(4)/Y02

0 Lu/n

12DLY12
0 ttL1/n/Y02

0 1•••#, ~3.11!

xL5DLttL1/n1•••, ~3.12!

and thence can express the generalized densitiesr̃ and s̃ in
Eq. ~2.11! in terms ofL and t. Finally, from Eq.~2.13! we
obtain the desiredk-loci in the (r,T) plane as

r (k)~T;L !/rc511B1
(k)L22b/n1C1

(k)L2(12a)/n

1B4
(k)L2(2b1u)/n1•••1A1

(k)t1•••

1A2
(k)L2d̄1B5

(k)L2(b1u5)/n1•••,

~3.13!

where the leading coefficients are

B1
(k)5~12 j 2!~3 j 21ke1!UL

2~Y02
0 !3/3rc

2Y04
0 , ~3.14!

C1
(k)52~ l 11 j 1!DLY10

0 /rc , B4
(k)53B1

(k)UL4
c Y02

(4)/Y02
0 ,

~3.15!

A1
(k)5v01n31~2q01n0!m̌1

(k)1~n012m0! p̌1
(k) ,

~3.16!

while A2
(k) andB5

(k) , which also entail thenonlinearscaling-
variable coefficientsv0 ,n0 ,m0 ,q0 , . . . @see I ~1.4!–~1.6!#,
are given inK ~4.62!.

Note that the coefficientA1
(k) of the leading analytic,

L-independent term actually coincides withA1 in I ~3.26!
04150
which is the amplitude of the lineart term in the coexistence
curve diameter. Furthermore, the contribution from t
finite-size corrections to the scaling fields, i.e., theL2d̄ term
in Eq. ~3.13! is dominated byL22b/n, L2(12a)/n, and
L2(2b1u)/n terms ~provided d̄>2). WhenT5Tc , the ana-
lytic, L-independent part ofrc

(k) vanishes. The leading cor
rection then decays asL22b/n with an amplitude that varies
linearly with k; this is followed by anL2(12a)/n term whose
amplitude doesnot depend onk. As mentioned in the Intro-
duction, the leading amplitudeB1

(k) vanishes, in fact, whenk
assumes the ‘‘optimal value’’kopt523 j 2 /e153Rm , where
the Yang-Yang ratioRm is defined in Ref.@9# and I Sec.
III E. This value coincides with that obtained inI ~4.37! for
the thermodynamic limit when it should describe the partic
lar k-locus that approaches the critical point ‘‘most directly
in the (r,T) plane.

B. Finite-sizek-loci: Behavior and applications

The near-critical behavior of the finite-sizek-loci for the
HCSW fluid and for the RPM electrolyte is illustrated
Figs. 1~a! and 1~b!, respectively. The results shown are bas
on simulations in periodic cubic boxes of dimensio
L* (5L/a, wherea is the hard-core diameter! up to 13.5
and 12, respectively@8,22#. The limiting (L→`) behavior
for the same models is shown in Figs. 1 and 2 ofI , ~while
results for a van der Waals fluid are shown inI , Fig. 3!. The
differences between the HCSW and RPM are quite striki
for the former a value ofkopt close to zero or even somewh
negative is suggested, while for the RPM one might co
cludekopt.0.8. These~inevitably rather uncertain! estimates
correspond surprisingly well viakopt53Rm with more recent
~quite independent! estimates for the Yang-Yang ratioRm of
20.044(3) and10.26(4) for the two models@28#.

Result ~3.13! shows that the density estimatedat T5Tc
on the k-locus, namely,r (k)(Tc ;L), approaches the bulk
critical densityrc as, in leading order,L2c, with c52b/n
provided the pressure mixing coefficientj 2 does not vanish.
For (d53) Ising-type criticality this predictsc.1.03
whereas for a classical systemc52. If j 2 ~and, hence,Rm)
vanishes or is numerically small, the next leading term in E
~3.13!, varying asL2(12a)/n, becomes dominant. The expo
nentc5(12a)/n then takes the value 2 for classical crit
cality but .1.41 for (d53) Ising systems.

If a reliable estimate forTc is known—we indicate below
@in Sec. IV C# how this may be found by using theQ-loci—
these results can be used in simulations to obtain convinc
unbiasedestimates of the critical densityrc . By ‘‘unbiased’’
we mean that prior knowledge of the critical universal
class isnot required. One effective strategy is implement
in Fig. 2 for the HCSW fluid where rc* (L* )[
r(k)(T5Tc ;L* )a3 has been plotted fork50 and k51 vs
1/L* c for trial values of the exponentc varying from 1 to 2
~which encompasses both the classical and (d53) Ising uni-
versality classes!. For these plots the HCSW estimateTc*
[kBTc /e.1.2186, obtained in Sec. IV C below, has be
used. It turns out, however, thatr (k)(T;L* ) is rather insen-
sitive to T.Tc so that essentially the same results are
6-8
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tained if the original Orkoulaset al. @8# estimate~which is
about 0.06% lower! is used instead.~Note that this insensi-
tivity is not realized in the RPM.!

The straightest plot fork51 @in Fig. 2~b!# corresponds to
c.1.0 which is consistent with Ising behavior~as expected!.
However, thek50 plots in Fig. 2~a! are straightest forc
51.4–1.7: this is also consistent with Ising behavior p
vided ~as seems to be the case! the value of j 2 is small.
Together these plots suggest a critical value ofrc* in the
range 0.3065–0.3080. To improve the possibilities for
trapolation, thek50 data are combined with data fork
50.25 and 0.1 in Fig. 3 and plotted vsA/(L* 1 l * )c, where
A is merely a convenient scale factor while the ‘‘shift’’l * has
been introduced to allow~approximately! for the anticipated
higher-order corrections. From this figure, we estimaterc for
the HCSW fluid~with interaction rangeb51.5a @8#! as

FIG. 1. The k-loci in the (r,T) plane for ~a! the hard-core
square-well fluid with~from the right! k50, 0.25, and 1 where the
system sizesL* used in the figure are 5, 6, 7.5, 9, 10.5, 12, a
13.5 ~measured in units of the hard-core diameter,a[s) @8#; and
~b! the restricted primitive model electrolyte withk50, 0.5, and 1
where the system sizes shown areL* 56, 7, 8, 9, 10, and 12@22#.
The estimated critical point is shown by a cross@22#. Note that
r* 5ra3 while the reduced temperaturesT* are defined in Refs.@8#
and @22# and in Sec. V.
04150
-

-

rc* [rca
350.306860.0007. ~3.17!

This value agrees well with Orkoulaset al. @8# who found
rc* 50.306760.0004. By the same approach Luijtenet al.
@22# estimated the critical density of the RPM electrolyte b
only to the rather lower precision of63% which, however,
should be more reliable than other, less systematic and
ased methods.

IV. BEHAVIOR OF THE Q PARAMETER AND Q-LOCI

Some time ago Binder@23# introduced the dimensionless
finite-system moment ratio,QL(T;^r&L)[^m2&L

2/^m4&L , de-
fined in a grand-canonical ensemble withm5r2^r&L , and
showed how, in simulations of symmetric systems~wherer
5rc is known!, it was particularly useful in locating the
critical temperature precisely. Specifically, plots
QL(T;rc), evaluated on the~symmetric! critical isochore at
values ofL increased in steps by incrementsDL, display
successive intersections at temperatures, say,TQ

DL(L), that
rapidly approach the limiting, critical temperatureT5Tc . At
the same time the intersections define a unique and unive

FIG. 2. The scaling behavior ofrc* (L* ) at T5Tc for ~a! the k
50 locus ~solid lines and squares! and ~b! the k51 locus for a
hard-core square-well fluid@8# for trial values of the exponentc: ~i!
1.0,~ii ! 1.2,~iii ! 1.4,~iv! 1.7, and~v! 2.0. The dotted lines and ope
squares in part~a! derive from theQ-loci: see Sec. IV A.
6-9
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critical value @24–26# Qc5 limL→`QL(Tc ;rc). However,
the obvious difficulty in attempting to adapt this approach
a nonsymmetric fluid system is that the critical density isnot
known; nor, in fact, even ifrc were known, is it clear that the
critical isochore would be the most appropriate locus
which to examine the temperature dependence ofQL . In-
deed, we will see from our study ofQL(T;^r&L) for general
systems, which is presented here, that the locusr5rc , even
if known, would not normally be optimal.

To make progress as explained in the Introduction,
define, following Ref.@22#, the Q-loci rQ(T;L) via the iso-
thermal maxima ofQL(T;^r&L) where, it is worth reempha
sizing, ^•&L denotes a grand canonical finite-size average
which m is chosen to yield the desired values of the me
density^r&L ~which, of course, isdistinct from what might
be considered for a canonical system in whichr[N/V is
directly controlled and does not fluctuate!. As seen in Fig. 4,
for the HCSW fluid and the RPM, the ratioQL at fixed T
displays a unique maximum vs density so thatrQ(T;L) is
well defined. In more complex models with, e.g., more th
one critical point, the loci will presumably display separa
branches or more complex topology; but our concern her
with the behavior of the loci near criticality asL→`, first in
the one-phase region aboveTc , then through the two-phas
region belowTc . In the following section we illustrate the
explicit use of these results in simulations.

A. Q-loci above criticality

As observed originally by Binder, thermodynamic dens
fluctuations in a single-phase region of the phase pl
should follow a Gaussian distribution whenL→` so that

FIG. 3. Estimation of the critical density for the HCSW fluid b
extrapolation toL→`. The upper solid symbols derive from th
k50 locus with ~from the right! (c, l * , A)5(1.0, 21.5, 0.7),
(1.2, 20.5, 1.0), (1.4, 0,1.4), (1.7, 1.0, 2.4), (2.0, 1.5, 3.5)
The central crosses, from thek50.1 locus, have (c,l * , A)
5(1,0, 1). The lower,open symbols are plotted with~from the
right! (c, l * , A)5(1.0, 0.5, 1.0), (1.2, 2.0, 1.7), (1.4, 3.0, 2.7
(1.7, 4.5, 5.6), and (2.0, 6.0, 10.5).
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QL(T;^r&L) for T.Tc should tend to the constant value1
3 as

L increases. In practice, as illustrated in Fig. 5, the appro
at fixed T is nonmonotonic and entails a progression of t
Q-locus to an apparently well-defined limitrQ

`(T).
To estimate the asymptotic behavior ofrQ(T;L) we may

follow the strategy used in studying thek-loci. First, in terms
of the generalized susceptibilitiesxNk5(]kp̄/]m̄k)T with p̄

[p/kBT and m̄[m/kBT, note that QL is equivalent to
V(xNN)2/xN4. Thence we find

S ]QL

]m̄
D

T

5V
xNN

~xN4!2
@2xN3xN42xNNxN5#, ~4.1!

from which, since^r&L increases monotonically withm at
fixed T, one sees that therQ locus satisfies the equation

2x̌N3x̌N42x̌NNx̌N550. ~4.2!

FIG. 4. The moment-ratio parameterQL(T;r) vs r at fixed
temperatures~a! for the hard-core square-well fluid atL* 510.5
~from the top,T* 51.0, 1.1, 1.15, 1.2, 1.22, 1.25, 1.3, 1.35, an
1.4!: note thatTc* .1.2179@8#, and ~b! for the restricted primitive
model electrolyte atL* 510 ~from the bottom, the solid-lines are
for 1/T* 513, 15–19, 19.5, 20, 20.5, and 21!; the dashed line is at
Tc* .0.050@22#.
6-10
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Here we have employed the reduced susceptibilitiesx̌NN ,
x̌N3, etc., introduced in Eqs.~2.16! and~3.4!. From Eq.~3.4!
we then obtain

rcx̌N45e1
3UL

3L (g1D)/n@~]y
4Y!~]yL /]m̌!T1~]x]y

3Y!

3~]xL /]m̌!T#2 j 2e1
3rc

21UL
4L2g/n@4~]y

4Y!~]yY!

110~]y
3Y!~]y

2Y!#~]yL /]m̌!T

2 j 2e1
3rc

21UL
4L2g/n@4~]x]y

3Y!~]yY!14~]y
3Y!

3~]x]yY!16~]x]y
2Y!~]y

2Y!#~]xL /]m̌!T

23e1
2e3UL

2DLL (g11)/n@~]x]y
3Y!~]yL /]m̌!T

1~]x
2]y

2Y!~]xL /]m̌!T#1•••. ~4.3!

Using Eq.~3.3! for (]yL /]m̌)T and, in that result, Eq.~2.13!
for ř yields

rcx̌N45e1
4UL

4L (g12D)/n~]y
4Y!25 j 2e1

4rc
21UL

5L (2g1D)/n

3@~]y
4Y!~]yY!12~]y

3Y!~]y
2Y!#

24e1
3e3UL

3DLL (D1g11)/n~]x]y
3Y!1•••. ~4.4!

Similarly, after some algebra, we obtain

rcx̌N55e1
5UL

5L (g13D)/n~]y
5Y!2 j 2e1

5rc
21UL

6L2(g1D)/n

3@6~]y
5Y!~]yY!115~]y

4Y!~]y
2Y!110~]y

3Y!2#

25e1
4e3UL

4DLL (g12D11)/n~]x]y
4Y!1•••. ~4.5!

FIG. 5. Variation of the moment ratioQL(T;r) with increasing
size for a hard-core square-well fluid atT* 51.300.1.0674Tc* @8#;
the system dimensions areL* 55, 6, 7.5, 9, 10.5, and 12. Th
horizontal solid line represents the single-phase limitQ`5

1
3 .
04150
Now we may use the leading approximation~2.9! for the
scaling functionY and substitute expressions~2.16!, ~3.4!,
~4.4!, and ~4.5! into the Q-locus equation~4.2!. This then
reduces to

@4~Y04
0 !225Y02

0 Y06
0 #yL13 j 2~Y02

0 !2Y04
0 UL /rcL

b/n1•••50,

~4.6!

where, for brevity, we have displayed only the leading term
this, in turn, is readily solved to yieldyL on theQ-locus as

yL'2
j 2YQ

Lb/n
, YQ5

3~Y02
0 !2Y04

0 UL /rc

4~Y04
0 !225Y02

0 Y06
0

. ~4.7!

To obtain the densityř we appeal to Eq.~2.13! and use Eq.
~2.11! for r̃ and s̃; then, with Eqs.~2.6! and ~2.8! for the
scaling functions, and using Eq.~4.7! for yL , we finally ob-
tain theQ-locus explicitly as

rQ~T;L !/rc511BQL22b/n1CQL2(12a)/n1AQt1•••,

~4.8!

where the leading coefficients are

BQ522 j 2~12 j 2!YQY02
0 UL /rc ,

CQ52~ l 11 j 1!Y10
0 DL /rc , ~4.9!

while AQ is equal toA1
(k)[A1, the ~reduced! slope of the

coexistence curve diameter as given in~3.16! and I ~3.26!.
Note that the leading amplitudeBQ vanishes whenj 250. As
an explicit example, we present theQ-locus for a hard-core
square-well fluid@8# in Fig. 6. Evidently, the loci both above
and belowTc approach the critical point whenL→`.

As illustrated by the open squares in Fig. 2~a! above, the
evaluation ofrQ(T;L) at T5Tc can be used to provide un
biased estimators for the critical density,rc which, in fact,
resemble quite closely the sequence provided by thek50
loci: see also Fig. 5 in Ref.@22#.

B. Modified or Q„k…-loci

It is instructive to define a modifiedQ parameter, as for
x (k) in Sec. III A, via

QL
(k)~T;^r&L![QL~T;^r&L!/^r&L

k . ~4.10!

The modified orQ(k)-loci are then defined by the points o
isothermal maxima ofQ(k) in the (r,T) plane. In terms of
the reduced susceptibilities, the equation for the loc
rQ

(k)(T;L) becomes

ř@2x̌N3x̌N42x̌NNx̌N5#5kx̌NN
2 x̌N4, ~4.11!

which extends Eq.~4.2!. The extension of Eq.~4.6! gains the
term 1

3 k(12 j 2)(Y02
0 )2Y04

0 ULL2b/n/rc on the right hand side
6-11
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Y. C. KIM AND M. E. FISHER PHYSICAL REVIEW E68, 041506 ~2003!
Finally, rQ
(k)(T;L) is represented by thesame expression

~4.8! ~for k50) except thatBQ must be replaced by

BQ
(k)522@ j 22 1

9 k~12 j 2!#~12 j 2!YQY02
0 UL /rc .

~4.12!

This coefficient vanishes whenk5kQ59 j 2 /(12 j 2)5
29Rm which may be contrasted with the ‘‘optimal’’k-locus
specified bykopt53Rm ~see Sec. III A!. Note that the coef-
ficientsCQ andAQ in Eq. ~4.8! do not gain anyk dependence
although various higher-order coefficients will, in fact, d
pend nonlinearly onk.

C. Behavior of Q in the two-phase region

At fixed T,Tc the phase transition in the thermodynam
limit is of first-order character with a jump in density from
r2(T) to r1(T) asm increases through the phase bounda
ms(T). Finite-size scaling theory has been extended to fi
order transitions@23,40–43# although the main focus previ
ously has been on the dependence as a function of the
h}m2ms(T). Here, motivated by the requirements of sim
lations, we will enquire more closely into the variation wi
the densityr. From this perspective, the crucial feature
that whenm.ms , the grand canonical equilibrium distribu
tion function PL(r;m,T) exhibits two peaks located at den
sities nearr2([rvap) andr1([r liq). For sufficiently large
L these peaks can be represented as Gaussians@23,42,43#.
Inside the two-phase region one may also need to cons
the surface free energy associated with interfaces that s
rate domains of coexisting phases@27,40,44,45#. However,
for regularly shaped domains~such as periodic cubes o
fixed-shape parallelepipeds! these contributions enter only a
exponentially smaller corrections, so they are not conside

FIG. 6. TheQ-loci in the (r,T) plane for a hard-core square
well fluid. From the right, the simulation box dimensions areL*
55, 6, 7.5, 9, 10.5, 12, and 13.5. The estimated critical point sho
is (rc* ,Tc* )5(0.3067, 1.2179)@8#; the solid dots represent the e
timated coexistence curve diameter.
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here. In the case of general fluids the density distribut
PL(r) has no symmetry: thus for largeL in a d-dimensional
system of fixed regular shape with periodic boundary con
tions, we will accept the form@27#

PL~r;m,T!'CL$x2
21/2exp@2b~r2r2!2Ld/2x2#

1x1
21/2exp@2b~r2r1!2Ld/2x1#%

3exp@br~m2ms!Ld#, ~4.13!

where b51/kBT, while CL(m,T) is a normalization con-
stant, and thex6(T) are the infinite-volume susceptibilitie
@defined viax5(]r/]m)T] at r5r6(T)6. This distribution
has been set up so that whenm5ms both Gaussians contrib
ute toPL(r) with equal weight@46#.

To simplify subsequent expressions let us introduce
basic, dimensionless ordering field

h5@m2ms~T!#/kBT, ~4.14!

and the average and difference densities and susceptibil

r̄~T!5 1
2 ~r11r2! and r0~T!5 1

2 ~r12r2!,
~4.15!

x̄~T!5 1
2 ~x11x2! and x0~T!5 1

2 ~x12x2!.
~4.16!

Note thatx0 vanishes identically in a symmetric system. F
further convenience, here we also define the augmen
field-dependent densities

r̄15 r̄1x̄h, r0
15r01x0h, and r0

(h)5r01 1
2 x0h.

~4.17!

By replacing the summation over discrete density valu
r5N/V>0, by integration overr and extending the lowe
limit to r52` ~which will entail only an exponentially
small error for largeL), we may computêr&L and the mo-
ments^mn&L . This yields

^r&L~m,T!'r̄11r0
1 tanh~hr0

(h)Ld!. ~4.18!

Note that whenh50 or m5ms(T), we have^r&L'r̄(T),
i.e., the coexistence curve diameter. Likewise we find

^m2&L~m,T!' f 01 f 1 /bLd, ~4.19!

^m4&L~m,T!' f 21 f 3 /bLd1 f 4 /b2L2d, ~4.20!

where, with

Dr[^r&L2 r̄1 and T 5tanh~hr0
(h)Ld!, ~4.21!

the coefficients may be written

n

6-12
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f 05Dr21r0
1222r0

1DrT, ~4.22!

f 15x̄1x0T, f 453~ x̄21x0
2!16x̄x0T, ~4.23!

f 25Dr416r0
12Dr21r0

1424r0
1Dr~Dr21r0

12!T,

~4.24!

f 356x̄~Dr21r0
12!212x0r0

1Dr

16~x0Dr212x̄r0
1Dr1x0r0

12!T. ~4.25!

From these results it is evident thatQL(^r&) is a ratio of two
polynomials of fourth order in̂r& but quadratic inL2d.

To examine the two-phase behavior ofQL in the thermo-
dynamic limit, let us define the scaled deviation from t
coexistence diameterr̄(T) via

y[~r2 r̄ !/r0 , ~4.26!

so thaty[61 for r5r6(T). In the first instance we may
then, as in Ref.@22#, setm5ms ~or h50) before allowing
L→`. As observed after Eq.~4.18! we then have^r&L

→^r&`5 r̄ and T [0 in Eqs. ~4.21!–~4.25!. If nonetheless
we identify^r&L in Eq. ~4.21! asr in Eq. ~4.26! and evaluate
^m2&` and ^m4&` accordingly one is led to

Q`
s~T;r!5124y2/~116y21y4!, ~4.27!

which, apart from the superscripts that indicates the limit-
ing procedure adopted, is the result quoted, misleadingly
Ref. @22#. Indeed, this can only be the correct limit o
QL(T;^r&) whenT,Tc if y50, i.e.,on the diameter.

To obtain the true limiting behavior for21<y<1, one
must first notice that for̂r&L to approach a general value
the interval (r2 , r1) the thermodynamic limit must be
taken withhLd in Eq. ~4.18! approaching a finite value tha
yields ^r&L→r for the desired value ofy. This corresponds
in fact, toT 'tanh(hr0L

d)'y and then yields—see also Re
@27#—the limiting moments

^m2&`5r0
2~12y2!, ~4.28!

^m4&`5r0
4~12y2!~113y2!, ~4.29!

both of which, perhaps surprisingly,vanish linearly on the
phase boundary, i.e., asy2→12. Equally, then@27#

Q`~T;^r&!5~12y2!/~113y2! ~T,Tc! ~4.30!

vanishes linearly on the phase boundary. On the other h
Q`(T,Tc) takes its maximal value, namely 1, on the coe
istence diameter (y50). Indeed, the corresponding approa
of therQ(T;^r&) loci belowTc to the diameter is evident in
Fig. 6.
04150
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To give a graphic impression of the limiting behavior
QL(T;^r&) we display in Fig. 7, plots constructed using E
~4.30! and the coexistence curve data for the hard-c
square-well fluid@8# at various temperatures belowTc . In
addition we have indicated by a cross the anticipated Is
critical point value,Qc50.6236(2) @25,26#, which we also
verify independently below. The horizontal line atQ5 1

3 de-
scribes the limiting single-phase value.

D. Scaling ofQL„Šr‹… near coexistence

In the one-phase region outside the coexistence curve,
for y2.1 @see Eq.~4.26!# the resultQ`5 1

3 should be recap-
tured by the analysis based on Eq.~4.13!; indeed, the results
~4.18!–~4.25! do confirm this. Thus forh nonzero and
L→`, expression~4.18! yields

^r&L'r61x6h22~r01x0h!e22hr0Ld
, ~4.31!

where the1 or 2 corresponds toh:0. On substitution in
Eqs. ~4.22!–~4.25! the L-independent terms in̂m2&L and
^m4&L cancel identically, leaving

^m2&L5x6 /bLd1O~e22hr0Ld
!, ~4.32!

and, similarly,^m4&L'3^m2&L
2 , yielding finally

QL~T!5 1
3 1O~e22hr0Ld

!, ~4.33!

for T,Tc andh nonvanishing~but not too large!.
Evidently, in the thermodynamic limit,Q`(T;^r&) van-

ishes asr approachesr1 or r2 from the two-phase region
and then jumpsdiscontinuouslyto 1

3 on entering the single-
phase domain. This behavior asL→` can be seen clearly in

FIG. 7. The behavior of the limiting moment ratioQ`(T;r) vs
r at fixed temperatures belowTc for the hard-core square-well fluid
@8#. The solid line, dashed line, and long-dashed line are forT/Tc

.0.82, 0.90, and 0.985, respectively. The cross is at the criti
point (Tc* , rc* ).(1.218, 0.3067)@8#.
6-13
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grand canonical simulations as illustrated in Fig. 8 for t
hard-core square-well fluid@8#. The predicted limiting be-
havior is approached rather rapidly at the selected temp
ture, namely,;5% below criticality. However, closer toTc
and for the RPM the convergence is much slower and
regular as seen in Fig. 9 which reports simulations;1.5%
below the~estimated! critical points. In all cases—as follow
from previous theoretical and simulation-based observat
@27,43,44#—the plots ofQL(T;^r&) display rounded, but in-
creasingly deep and sharpminimaoutside, but approaching
the coexistence curve asL increases. However, the strong
asymmetric and relatively slow approach of the RPM to
limiting behavior is striking. Nevertheless, it turns out th
by tracking these minima and suitably extrapolating them
the basis of the present theoretical foundations, remark
precise estimates of the density jump, 2r0(T)5r1(T)
2r2(T), and of the diameterr̄(T) can be obtained for both
models@28#.

In order to understand the minima better let us, for si
plicity, consider the symmetric case wherex15x2 so x0
[0 in Eqs. ~4.13!–~4.16!. After some algebra we obtai
from Eqs.~4.19!–~4.25! the expression

QL~T;r!5
@X1~12T 2!#2

3X 216X~12T 2!1112T 223T 4
, ~4.34!

whereT (hr0Ld) was defined in Eq.~4.21! while

X~T,h;L !5x̄~T!/r0
2~T!kBTLd. ~4.35!

WhenL→` so X→0 andh→0 with T 2→y2,1, the pre-
vious result~4.30! is recaptured; on the other hand, whenL
→` with h fixed and nonzero, one hasT 2→1 and Eq.
~4.33! is matched. A plot ofQL vs y generated from Eq

FIG. 8. Behavior ofQL(T;r) for a hard-core square-well fluid
at T/Tc.0.944 @8#. The thin lines represent simulation data f
L* 55, 6, 7.5, 9, 10.5, and 12, while the thick line is the predicti
for L5` @scaled to the estimated values ofr1* (T) andr2* (T)].
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~4.34! @seeK Figs. 4.9 and 4.8# quite closely mirrors, excep
for its precisey⇔2y symmetry, the simulations for the
HCSW fluid shown in Figs. 8 and 9~a!: indeed, the HCSW
fluid does not deviate drastically from overall symmet
even though it displays some pressure and chemical pote
mixing ~as discussed above!.

For finite L, Eq. ~4.34! predicts two minima that satisfy

T656~112X !1/2/~113X !1/2, ~4.36!

Qmin~T;L !5
X~213X 2!2

4118X136X 2127X 3
,

5x̄/r0
2kBTLd1O~e22hr0Ld

!. ~4.37!

ThusQmin(L) approaches zero, the limiting value at coexi
ence, asL2d. On the other hand the positions of the minim
approachr1 andr2 whenL→`. In order to find the cor-

FIG. 9. Simulation data forQL(T;r) ~a! for the hard-core
square-well fluid atT/Tc.0.985 using the same box sizesL* as in
Fig. 8; ~b! for the RPM electrolyte atT/Tc.0.986 forL* 55 –10
@22#. The thick lines represent predictions for the limitL5`.
6-14
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respondingL dependence, we first determineh6 from Eqs.
~4.36! and ~4.21! obtaining a (lnL)/Ld variation. From Eq.
~4.18! we then find the density minima at

rmin
6 ~T;L !5r6~T!62r0~T!BQ~T!L2d

3@ ln~Ld/BQ!211O~L2d!#, ~4.38!

where the scaling amplitude is

BQ~T!5kBTx̄~T!/4r0
2~T!. ~4.39!

Since this result has been derived only for the symme
case~although it has wider validity@28#! we may replacex̄
by x15x2 ; it is also useful to recall that 2r05r12r2

5Dr`(T) @see Eq.~1.11!#.
Our discussion ofQL(T;^r&) below Tc has, up to this

point, been confined tofixed Tand, then, to large enoughL.
On the other hand, whent5(T2Tc)/Tc→02 the basic ther-
modynamic properties entering the expressions
QL(T;^r&) and for the minima and their locations will dis
play their standard critical behavior, specifically,r0;utub,
x̄;utu2g, while x0;utub2g @seeI ~3.41,3.42!#. Beyond that,
however, the divergence of the correlation length, nam
j;a/utun, implies that each variableL appearing in the for-
mulas above should, whent→02, be associated with a fac
tor utun. However, the analysis based on the two-Gauss
form ~4.13! implicitly assumed thatw[L/j;L* utun was
large @27,40–45#: thus whent→02, we may not simply
substitute the expected powers oft in to the expressions s
far derived. On the other hand, the full scaling expression
QL implied by the basic scaling ansatz~2.2!, namely,

QL~T;r!'Q~xL ,yL ,yL4 ,yL5 , . . . !, ~4.40!

must reproduce the expressions obtained here whenw
[L/j;uxLun→` @see Eq.~2.3!#. This means that althoug
we cannot hope to derive theoretically an explicit gene
expression for the scaling functionQ(x,y, . . . ), oreven the
scaling forms for the reduced minima,rmin

6 (T;L)/r0(T), we
have in essence obtainedexact information about the corre
sponding scaling behavior. It thus transpires, as shown
Ref. @28#, that by starting at a temperature belowTc where
j(T)/a5O(1), simulation data at increasingT can be used
to generate the appropriate scaling functions forrmin

1 (T; L)
andrmin

2 (T; L) and thereby also obtain precise estimates

r0(T) and r̄(T), i.e., the~limiting! coexistence curve an
diameter, even very close toTc .

V. APPLICATIONS TO SIMULATION

In this section we extend and illustrate the finite-size sc
ing analysis and the use of the special loci by estimat
critical parameters for the hard-core square-well fluid@8# and
the restricted primitive model electrolyte@22# on the basis of
grand-canonical Monte Carlo simulations. In particular,
Q-loci play an important role in determining the critical tem
perature and indicating the universality class of the mod
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Once the critical temperature is obtained, we may use
k-loci and theQ-loci to estimate the critical densityrc as
already demonstrated in Sec. III B: see Fig. 3. To estim
the universal correlation exponentn for the RPM, the critical
isochore is then utilized.

A. Estimation of Tc for the hard-core square-well fluid

The HCSW fluid is the simplest continuum model th
exhibits realistic gas-liquid separation and criticality. Ha
spheres of diametera[s interact via an attractive square
well pair potential of depth« and rangeb5la. In the simu-
lations discussed here@8#, l is taken to be 1.5 which reason
ably represents simple fluids such as argon, etc. Redu
temperature and density are defined, as usual, viaT*
5kBT/« andr* 5ra3.

As already observed, for systems with anaxis of symme-
try, such as Ising ferromagnets and lattice gases, Bin
@23,42# used the moment parameterUL[(121/3QL) to es-
timate critical temperatures~and critical exponents! by
evaluating the parameter as a function ofT on the axis of
symmetry, where, of course, the ordering fieldh̃ vanishes
identically for all L, and then locating self-intersection
However, asymmetric systems, such as continuum flu
where there is no obvious symmetry axis, pose a cru
question when one aims to apply the same idea: Wh
should one look? The best choice is, naturally, the locus
‘‘symmetry’’ corresponding to the vanishing of the finite-siz
ordering fieldh̃(p,T,m;L). In practice, however, the mixing
coefficientsk1 , j 2, and s2 in the ordering field—see Eqs
~1.4! and~1.8!—are not known for such systems so that it
difficult to determine the locush̃50 in, say, the (T,r) plane.

Furthermore, supposeQL is calculated along any fixed
locus—such as the critical isochore or even, say, the limit
Q-locusrQ

`(T)—on which h̃ does not vanish, but rather re
mains nonzero for anyL. The contributions toQL from non-
vanishingh̃ may then be gauged by expanding the scal
functionQ(xL ,yL , . . . ) in Eq.~4.40! about the critical point
as

Q~xL ,yL , . . . !5Qc1Q1xL1Q2xL
21Q3yL

2

1Q4yL41Q5yL5
2 1•••, ~5.1!

where the linear termsyL , yL5, etc., vanish identically in
view of the basic symmetry underyL⇔2yL , yL5⇔2yL5,
etc. Evidently, any small uncertainties in the critical para
eters will be enhanced via the scaling combinationyL

}h̃LD/n whenL increases. For example, ifdrc is an error in
rc , the contribution toQL will vary as yL

2;drc
2L2b/n and

hence diverge whenL→`, thus causing difficulties in ex-
trapolating finite-size data. Explicit calculations reveal t
corresponding reduction in precision.

Beyond this issue one finds, by explicit calculations f
strongly asymmetric systems such as the RPM, that the
havior ofQL(T) on the critical isochore,̂r&L5rc , may not
even be monotonic—as it is on theh̃50 locus. This adds
further uncertainty to interpreting the data.
6-15
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To overcome these obstacles, we consider theQ-loci,
rQ(T;L), for a fixedL on which it was shown in Sec. IV A
that the scaling combinationyL}h̃LD/n actually decaysas
j 2L2b/n when L→`: see Eq.~4.6!. ~Thus h̃ vanishes like
j 2L2(D1b)/n.! Hence, theQ-locus can be considered as a
‘‘optimal’’ choice for analyzingQL and estimatingTc . No-
tice, of course, that in a symmetric system theQ-locus re-
duces toh̃50 ~or, equivalently, tor5rc). For certain other
thermodynamic quantities one might find corresponding
timal loci, such as thek-susceptibility-loci, etc. Here we ex
amineQL evaluated on theQ-loci for the HCSW fluid.~For
application to the RPM: see Ref.@22#.!

Generally, one must expect thatQL on a Q-locus starts
nearQ5 1

3 aboveTc ~in the one-phase region!; but, since the
Q-loci in the two-phase region approach the diameterr̄(T)
@see Fig. 6#, QL must then approach unity belowTc @see Eq.
~4.30!#. At T5Tc the Q-loci approach the critical point so
that QL on aQ-locus must pass through the universal va
Qc at some temperature, sayTc

Q(L), that approachesTc as
L→`. These features are evident in the plots ofQ on the
Q-loci for the HCSW fluid shown in Fig. 10. Thus all th
curves intersect one another near the Ising valueQc
.0.6236~for periodic boundary conditions on a cube@24–
26#! strongly confirming that the HCSW fluid belongs to th
(d53)-dimensional Ising universality class.

To obtain the asymptotic behavior ofTc
Q(L) for large L,

we solve the equation

QL~T;rQ!'Q~xL ,yL ,yL4 ,yL5 , . . . !uQ5Qc , ~5.2!

where the subscriptQ notation denotes evaluation on th
Q-locus. Substituting expression~4.7! for yL on theQ-loci
and using Eq.~5.1!, we may solve this equation to obtain

FIG. 10. Plots ofQL(T;^r&L) on theQ-loci, rQ(T;L), for the
HCSW fluid providing estimates forTc andQc . Classical,XY, and
Ising values ofQc are marked on theQ axis @24–26#. The system
sizes match those in Fig. 6.
04150
-

xL5DLttL1/n1•••,

'2UL4
c Q4 /Q1Lu/n2 j 2

2YQ
2 Q3 /Q1L2b/n, ~5.3!

wheret was defined in Eq.~3.10! andYQ in Eq. ~4.7!, while
the coefficientsQj in Eq. ~5.1! could also be expressed i
terms of the scaling-function expansion coefficientsYlm

k . Fi-
nally, Tc

Q(L) is given by

tc
Q~L ![@Tc

Q~L !2Tc#/Tc

52P1 /L (11u)/n2P2 /L (112b)/n1•••, ~5.4!

P15Q4UL4
c /tQ1DL , P25 j 2

2YQ
2 Q3 /Q1tDL . ~5.5!

Notice that ford53 Ising systems the leading exponents
Eq. ~5.4! are (11u)/n.2.41 and (112b)/n.2.62, the lat-
ter with an amplitude proportional toj 2

2; these large values
explain the observed rapid convergence of theTc

Q(L).
Figure 11 displaysTc

Q(L) vs L2c for the HCSW fluid
with the predicted Ising valuec5(11u)/n.2.41. The
small valueRm52 j 2 /(12 j 2) @seeI ~3.41!# of about20.04
discussed in Sec. III B indicates that the amplitudeP2 in Eq.
~5.4! is negligible. Thus considering only the leading term
sensible. However, to allow for the various higher-order c
rections, the small shift parameterl * has been introduced.

From this plot, we estimate the critical temperature for t
hard-core square-well fluid to be

Tc* .1.218660.0003 ~HCSW!. ~5.6!

This value is about 0.06% higher than the estimateTc*
.1.217960.0003 of Orkoulaset al. @8#. For the RPM,
Luijten et al. @22# obtained a precision of60.04% in esti-
matingTc* by the same approach.

It is worth stressing that in all these calculations~and
those described above and below! it has been imperative to

FIG. 11. Plots ofTc
Q(L) vs (L* 1 l * )2c with c5(11u)/n

52.41 to estimateTc* for the HCSW fluid.
6-16
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use extensive histogram reweighting procedures@47# in order
to precisely determine intersections of loci, maxima a
minima, etc. It is clear that without sufficient precision an
indeed, accuracy in calculating finite-size properties,
trapolation procedures are doomed to failure or, worse, s
ously misleading estimates.

B. Estimation of Qc

There seems little serious doubt on the basis of Fig. 10~as
well, of course, as on previous evidence@8#! that criticality in
the HCSW fluid is of short-range Ising type. In other cas
however, one may well desire to estimateQc , and hence
resolve the universality class, in unbiased fashion. In t
situation the successive intersections of plots ofQL on the
Q-loci for increasing sequences ofL values may be useful
Accordingly, let us defineTQ

DL(L) andQQ
DL(L) as the inter-

sections of a plot ofQL(T) on therQ(L;T) locus with a plot
of QL2DL(T) on the rQ(L2DL;T) locus and ask for the
asymptotic behavior asL increases at fixed, smallDL.

The analysis follows the lines of the preceding sect
except that Eq.~5.2! is replaced by

Q~xL ,yL , . . . !uQ2Q~xL2DL ,yL2DL , . . . !uQ'0.
~5.7!

For the temperature intersections we find

@TQ
DL~L !2Tc#/Tc5uP1 /L (11u)/n12bP2 /L (112b)/n1•••,

~5.8!

which, in leading order, isindependentof DL. The coeffi-
cientsP1 andP2 are the same as those defined in Eq.~5.5!,
which enter Eq.~5.4!, namely the asymptotic result fo
tc
Q(L), the intersections withQc . However, the approach

takes place from the opposite side, and sinceu.0.52 and
2b.0.65, the amplitudes are smaller. For these reasons
might well prefer to use the successive intersections: h
ever, a little reflection shows that they place greater dema
on the precision and reliability of the simulations.

Unfortunately, the convergence of the estimates forQc is
not as rapid. We find

QQ
DL~L !'Qc1~11u!Q4UL4

c /Lu/n

1~112b! j 2
2Q3YQ

2 /L2b/n, ~5.9!

where for Ising-type systems the exponents areu/n.0.83
and 2b/n.1.04. This slower convergence may be the r
son why the successive intersections seen in the inset in
10 suggest a limit some 1% or 2% higher than the es
lished Ising value@24–26#. However, since no special effort
were originally made@8# to gather HCSW data optimal fo
evaluatingQ and theQ-loci, one must also suspect the po
sibility of inadequate simulation accuracy. By contrast,
central unbiased estimate forQc for the RPM ~on which
considerable effort was focused! captured the Ising value
precisely within uncertainties of only60.3% @22#.
04150
d
,
-
ri-

,

t

n

ne
-

ds

-
ig.
b-

e

C. Estimating the correlation exponent

Of basic importance and value in determining the univ
sality class of a model is the correlation length exponentn.
As already frequently stressed, this enters in finite-size s
tems via the combinationLu t̃ un which opens many routes t
the estimation ofn. For example, the scaling ofQL on the
Q-locus should satisfy

QL„T;rQ~T;L !…2Qc'DQ~ tL1/n!. ~5.10!

From this it follows that the derivatives
]QL„T;rQ(T;L)…/]T evaluated atTc or at Tc

Q(L) or at
TQ

DL(L), etc., will all, in leading order, diverge asL1/n. How-
ever, obtaining these derivatives accurately is a difficult co
putational task. Furthermore, the corrections to the lead
behavior are likely to be quite significant@owing, in particu-
lar, to the strongly nonlinear variation ofDQ(x) which must
saturate at constant values of order unity whenx→6`].

To provide a robust method of estimatingn from simula-
tions above criticality—which are intrinsically easier to
bring to equilibrium than simulations closer to or belo
Tc — Orkoulaset al. @8# introduced various ‘‘estimator func
tions,’’ Yj (T,m). When evaluated in the thermodynam
limit on a critical locus, sayz, that approached the critica
point from above, these diverged ast→0; but in a finite
system they exhibited rounded maximaabove Tc at tempera-
turesTj (L). For suitable lociz the Tj (L) must approachTc

asL21/n. Then Orkoulaset al.consideredunbiasedexponent
estimators,independentof the unknown~or known! value of
Tc . Specifically, for a pairYj andYk , they measuredDTjk
5Tj (L)2Tk(L) and computed sequences

L jk[F12
DTjk~L1DL !

DTjk~L ! G L

DL
→ 1

n
, ~5.11!

asL→`. By using estimates for the critical isochore, Or
oulas et al. @8# estimatedn for the HCSW fluid and con-
firmed its Ising-type character. They also checked th
within the available precision, the results forn were not sen-
sitive to the estimate forrc .

However, this method is relatively demanding in that t
differencesTj (L)2Tk(L) must be obtained to relatively
high precision. For the RPM—which is much harder
simulate reliably than the HCSW fluid even aboveTc—this
proved a stumbling block. In addition, while relative inse
sitivity to the estimate ofrc could reasonably be expecte
the very strong asymmetry and the likelihood of strong pr
sure mixing~since confirmed@28#! made the choice of criti-
cal locus more questionable. Would the critical isochore s
be satisfactory?

At issue in this latter question is that, as a result of pr
sure mixing, the estimator functionsYj (T) pick up contribu-
tions varying with the fieldsh̃ and p̃ on the locusz, sayr
5rc . This question is partly resolved by the analysis oI
Sec. IV D which shows that on the critical isochore@and, by
extension, on any locus behaving asymptotically asr

2rc)'ct→0] one hash̃;utu12a1g and p̃;utu22a. The as-
6-17
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sociated correction exponents are sufficiently large (*2)
that they are of little practical concern relative to the u
avoidable leading correction-to-scaling terms varying astu.
In a finite system a discussion along the lines leading to
~5.9! @that invokes the analog of Eq.~4.7! for yL on the
isochore# is appropriate; but, as in Eq.~5.9!, the extra terms
to be anticipated, varying asL22b/n, are of higher order than
the leadingL2u/n corrections. Nevertheless, it may be
value, as suggested in Ref.@10#, to use as the locusz a
‘‘theta locus’’ defined via

rq~T!5rc@q1~12q!~Tc /T!#, ~5.12!

where a most favorable value ofq might be one chosen to
approximate an optimalk-locus orQ(k)-locus.

For the RPM a second problem arises which we exp
here and then deal with explicitly. For completeness we
call that the restricted primitive model electrolyte consists
N52N1 hard spheres of diametera[s, of which N1 carry
a charge1q0 and N2(5N1) a charge2q0. The pairwise
Coulomb potential is6q0

2/Dr for two like/unlike charges a
separationr. Appropriate reduced variables are

T* 5kBTDa/q0
2 , r* 5ra3. ~5.13!

Orkoulaset al. introduced 12 estimator functionsYj ( j
51, . . .,12) @8#. The simplest,Y15CV , was the constan
volume heat capacity. But for the RPM this displays maxi
fairly far below Tc which, moreover, are not easy to loca
precisely @48–50#. With Q51/T* Orkoulas et al. defined
Y25(]CV /]Q)r : this function has a local extremum
T2

1(L), above Tc which varies fairly regularly asL in-
creases: see Fig. 12. On the other hand, in the case o
RPM the functionsY3 , . . . ,Y6 prove to have maxima clos
to but below Tc . The functionY7, a modified susceptibility,
displays no maximaon the critical isochore in the rang

FIG. 12. The estimator functionY2(T)5(]CV /]Q) with Q
51/T* on the critical isochore (rc* .0.079) of the RPM electrolyte
~at a z55 discretization level@22#!. The vertical line marks the
estimated critical point atTc* .0.050 69@22#.
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0.045<T* <0.070. The remaining functionsY8 , . . . ,Y12 do
display extrema aboveTc but their behavior is not very
smooth for the accessible values ofL* .

Accordingly, new estimator functions were sought. Aft
some investigation, two further acceptable functions w
found, namely,

Y 48[S ]2^m2&1/2

]Q2 D
r

, Y 68[S ]2^m6&1/6

]Q2 D
r

, ~5.14!

wherem5(N2^N&)/V. The behavior of these functions re
sembles that shown forY2(T) in Fig. 12 although for the
same values ofL the maxima lie further fromTc : seeK
Figs. 4.15 and 4.16.

Finally, we must accept that neither the quantity nor t
quality of the obtainable RPM data suffices to impleme
recipe~5.11!. Instead, we accept the biased estimators

L j5F12
Tj~L1DL !2Tc

DTj~L !2Tc
GL* 1 l *

DL*
→ 1

n
, ~5.15!

which require a value forTc : that we take from the study o
Q on theQ-loci as in Fig. 10@22#. The shift parameterl *
allows, as in Fig. 11, for higher-order terms in the behav
of the Tj (L). Extrapolation vs 1/L, as illustrated in Fig. 13,
yields

n50.6360.03 ~RPM!. ~5.16!

This value~previously reported but not justified@22#! sup-
ports the conclusion that, despite the infinite range of

FIG. 13. Plots of estimators~5.14! for the exponent 1/n for the
RPM usingY2 ~open circles! andY 68 ~crosses! with l * 52, 0, and
22 from the top downwards, andY 48 ~solid circles! with l * 55, 3,
1, 21, and23: see text and Eq.~5.14!.
6-18
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ASYMMETRIC FLUID CRITICALITY. II. FINITE-SIZE SCALING . . . PHYSICAL REVIEW E 68, 041506 ~2003!
ionic forces underlying the model, it behaves, as rega
phase separation and criticality, like a short-range Ising-t
system.

VI. FULL SCALING IN THE CANONICAL ENSEMBLE

In the thermodynamic limit for regular systems there is
full equivalence between the different ensembles. Con
quently a ‘‘canonical description’’ in terms of the Helmhol
free-energy densityf (r,T)5 limL→`FN(V,T)/V with r
5 limL→`(N/V) is as valid and provides the same inform
tion as the grand canonical viewpoint based onp(T,m) that
we have so far adopted. Similarly, as observed in the In
duction, in leading order the canonical scaling form~1.13!,
which invokes the scaled combinationz}m/utub, is equiva-
lent to the grand canonical form~2.4! that entailsy}h/utuD
}@m2ms(T)#/utuD. However, in higher orders the necess
for field mixing via Eqs.~1.1!–~1.4! complicates matters
Specifically, whereas the full scaling fieldst̃ , m̃, and p̃ are
generally nonsingular functions of the underlying scaling
fields, t, m, and p ~unless renormalization group ‘‘reso
nances’’ arise@30#!, this is no longer the case for the canon
cal variablesm̃, t̃ , and f̃ . Here we derive some of thes
complications that arise canonically, first in the thermod
namic limit in the presence of pressure mixing, then in fin
systems. In the latter case we wish, in particular, to und
stand the asymptotics of the finite-size, classical-type crit
points that may be identified in canonical simulations: s
e.g., Refs.@8,22#.

A. Thermodynamic limit

By standard thermodynamics for infinite systems
Helmholtz free-energy density is given by

f ~r,T!5rm2p, ~6.1!

wherem andp are understood to be reexpressed in terms
the density viar5(]p/]m)T . It is straightforward to intro-
duce the reduced variablesř, p̌, and

m̌5e0~ h̃1 j 2p̃1e4t1••• !, ~6.2!

via Eqs.~1.1! and~2.12!, and convenient to recall Eq.~2.17!,
for e1 ande3, and, further, to write

e05e1
21 , e25 j 11 j 2l 1 , e45k11 j 2k0 . ~6.3!

Now we must address the choice of general canon
scaling variables. We wish, first, to allow for the leadin
correction-to-scaling terms which are expressed in termst̃
both for infinite and finite systems in Eqs.~2.2!–~2.4!. Ac-
cordingly, it seems appropriate to adoptt̃ also canonically,
although it will need to be reexpressed in terms ofm in place
of m̌.
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Similarly, it seems clear that the general scaling fieldm̃

should be chosen conjugate to the general ordering fieldh̃.
Thus we adopt

m̃5~] p̃/]h̃! t̃ , ~6.4!

which is identical to the scaling densityr̃ that was intro-
duced in Eq.~2.10! along with the scaling entropys̃.

With these variables in hand we can rewrite Eq.~6.1! as

f̌ ~r,T![ f ~r,T!/rckBTc5 f̌ 0~r,T!1 f̃ ~r,T!, ~6.5!

where the nonsingular background term may be expande

f̌ 0~r,T!5 f̌ c1m̄cř2k0t1e0e4řt1•••, ~6.6!

with f̌ c5(rcmc2pc)/rckBTc and m̄c5mc /kBTc . On the
other hand, the singular contribution becomes

f̃ ~r,T!5m̃h̃2 p̃1 j 2m̃p̃2e0e3s̃h̃2 j 2e0e3s̃p̃1•••,
~6.7!

in which the presence of the coefficientj 2 makes clear how
pressure mixing enters.

Our aim now is to expressf̃ in terms of the general ca
nonical scaling combinations

z5m̃/B̃u t̃ ub, y45U4u t̃ uu, y55U5u t̃ uu5, . . . ,
~6.8!

whereB̃5QU: see Eqs.~2.4! and ~2.5! and accompanying
text. To that end, from Eqs.~2.4! and ~6.4! we first obtain

z5W68 ~y;y4 ,y5 , . . . ! with y5Uh̃/u t̃ uD, ~6.9!

for t̃:0, whereW68 (y; . . . )5]W6 /]y. Inverting this ex-
pression yields

h̃5U21u t̃ uDF6
m ~z;y4 ,y5 , . . . !, ~6.10!

where the scaling functionsF6
m (z) are the inverses of the

W68 (y). From Eq.~2.4!, we hence find

p̃5Qu t̃ u22aF6
p ~z;y4 ,y5 , . . . !, ~6.11!

in which the new scaling functions are defined by

F6
p ~z;y4 ,y5 , . . . !5W6„F6

m ~z;y4 , . . . !;y4 , . . . ….

~6.12!

Then, rearranging Eqs.~1.2!–~1.4! and substituting yields
the canonical thermal scaling fieldas
6-19
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t̃ 5tt2e0e3h̃2e0e2p̃1•••,

5tt2~e0e3 /U !u t̃ uDF6
m ~z;y4 , . . . !

2e0e3Qu t̃ u22aF6
p ~z;y4 , . . . !1•••, ~6.13!

wheret512e0(k0e21k1e3) was also defined in Eq.~3.10!.
When the mixing coefficientsl 1 , j 1, and j 2 all vanish, t̃
reduces tott. Notice, however, in contrast to the gran
canonical formulation, that for nonzerol 1 or j 1 the scaling
fields t̃ is now a singular function oft with leadingnonlinear
contributions varying asutu22a2b andutu22a ~ in place oft2,
etc.!. By the same token, corrections proportional tom̃2

;m2, arising from the expansion ofF6
m (z) andF6

p (z), will
carry the singular factorsutug2b and utug; moreover, the
former actuallydominatesthe nominally leading term linea
in t.

For the general canonical order variablem̃, we find from
I ~2.18!

m̃5e0m1e0e3s̃1~ j 21 j 1k1!~e0
2/t!m21•••,

5e0m1e0e3Qu t̃ u12aF6
s ~z;y4 , . . . !

1~ j 21 j 1k1!~e0
2/t!m21•••, ~6.14!

where, from Eq.~2.10! for s̃, we find

F6
s ~z; . . . !5~22a!F6

p ~z; . . . !2~b1g!zF6
m ~z; . . . !.

~6.15!

Evidently, m̃ also entails singular terms that, indeed, intr
duce u t̃ u12a as a leading correction unlesse35 l 11 j 1 van-
ishes.

Finally, f̃ (r,T), the singular part of the Helmholtz fre
energy, can be expressed as a sum of a scaling piece, w
simply extends the original leading form~1.13!, plus a series
of nonscaling, singular but higher-order corrections arisin
from field mixing. If we define the scaling functions

X6~z;y4 , . . . !5F6
p 2zF6

m , X6
p 5zF6

p ,

X6
m ~z; . . . !56F6

s ~z; . . . !F6
m ~z; . . . !, X6

s 56F6
s F6

p ,

~6.16!

the explicit result, recalling Eq.~6.8!, is

f̃ ~r,T!52Qu t̃ u22a@X6~z;y4 ,y5 , . . . !

2 j 2QUu t̃ ubX6
p ~z; . . . !

1~e0e3 /U !u t̃ u12a2bX6
m ~z; . . . !

1 j 2e0e3Qu t̃ u12aX6
s ~z; . . . !1•••#. ~6.17!

Evidently, the most singular nonscaling correction is of re
tive orderu t̃ ub and arises only from the pressure mixing c
04150
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efficient j 2 that induces a Yang-Yang anomaly. In as far
this and the other nonscaling corrections are of higher or
~in powers of t̃ ) than the scaling term, they might be re
garded as part of a ‘‘singular background piece,’’ sa
f 0s(r,T). But the singular nature of the canonical scali
fields t̃ andm̃ cannot be so readily sidestepped.

In contemplating these results one may speculate
there might exist better choices of the canonical scal
fields, m̃ and t̃ , that would ameliorate the singular mixin
terms in Eqs.~6.13! and ~6.14! and/or absorb some or all o
the nonscaling corrections in Eq.~6.17!; however, this seems
unlikely to us. Indeed, it is worth recalling that even th
concept of a ‘‘nonsingular background’’ encounters dang
near criticality in a canonical or Helmholtz formulation
Thus in a symmetric system nearTc with m5r2rc one
might reasonably expect the background to have the po
series expansion

f 0~r,T!5 f c1 f 1t1 f 2m21 f 1,2tm
21 f 4m41•••.

~6.18!

But since the inverse susceptibilityx21(T) is given by
(]2f /]m2)T , the susceptibility itself cannot diverge atTc
unlessf 2 vanishes identically. Similarly, iff 1,2 and f 4 do not
also vanish, one would haveg<1 andd<3, both of which
inequalities contradict exact theory and precise experime
tion. These observations point, of course, to the fundame
character of a grand canonical or, better, a full field form
lation in terms ofp, m, andT.

B. Finite-size canonical criticality

To extend our canonical scaling description to finite s
tems we may follow Sec. II. First, in the set of scaled va
ables~2.3!, we replaceyL5ULh̃LD/n by

zL5BLm̃Lb/n. ~6.19!

Then, in addition to a nonsingular background free ene
f 0(r,T;L), we may anticipate a singular part, correspond
to Eq. ~6.17!, of the form

f s~r,T;L !5L2(22a)/n@X0~xL ,zL ;yL4 ,yL5 , . . . !

1 j 2L2b/nX1~xL ,zL ;yL4 , . . . !

1e0e3L (12D)/nX2~xL ,zL ; . . . !

1 j 2e0e3L (a21)/nX3~xL ,zL ; . . . !1•••#.

~6.20!

Note that the new finite-size scaling functionsX0 and X3
should be symmetric underzL⇔2zL , yL5⇔2y5L , etc.,
while X1 and X2 are antisymmetric. In the absence of fie
mixing we recover the obvious finite-size generalization
the scaling form~1.13!. However, the pressure mixing coe
ficient j 2 generates a nonscaling correction that vanishes
L2b/n and is antisymmetric inzL , yL5, etc. The coefficient
6-20
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l 1, which mixes the chemical potential into the thermal fie
t̃ , produces an antisymmetric correction vanishing
L2(12a2b)/n.

As in Eqs.~2.6!–~2.8! we expect that the scaling function
Xj (xL ,zL ;yL4 ,yL5 , . . . ), can be expanded generally in
powers of the irrelevant variables,yL4 , yL5, etc., and, also
for finite L near criticality, in powers ofxL and zL , with
coefficients Xj ,kl

k as in Eq. ~2.8!. @See alsoK ~4.182!–
~4.184!.# There is, in fact, a concealed subtlety here: spec
cally, the particle numberN is an integer so that the densi
r and, likewise,m are intrinsically discrete variables in
finite system. Away from criticality the free energy sure
approaches an analytic function ofr when L→`; but the
degree to which a corresponding smoothness may be
sumed in a finite system close to criticality isnot obvious.
@Incidentally, the corresponding issue can be raised in c
nection with the two-Gaussian description of the distribut
PL(r;m,T) in Eq. ~4.13!.# However, in the absence of con
crete evidence to the contrary, the assumption that the fin
size canonical free energyf (r,T;L) may be treated as a
analytic function through (rc ,Tc) seems highly plausible i
used, as here, to determine leading asymptotic beha
whenL→`.

Now simulations of simple fluid systems reveal that as
function of density,f (r,T;L) exhibits two peaks forT&Tc
that correspond to the separation of the two phases. One
then define a finite-size canonical critical poin
„rc

0(L),Tc
0(L)…, as a point where these two peaks merge.

virtue of the analytic behavior off (r,T;L), such canonical
critical points must, in general, be classical in charac
However, they will—at least in simple cases—approach
bulk critical point (rc ,Tc), whether or not the critical behav
ior remains classical in the thermodynamic limit. In pri
ciple, extrapolating such canonical critical points may h
locate the limiting critical point; in practice, however, th
has so far proved of limited usefulness@8,22#: see the nu-
merical behavior revealed in Fig. 3 of Ref.@8# and Fig. 1 of
Ref. @22#. Nevertheless, it is of interest to elucidate t
asymptotic behavior, especially ofrc

0(L).
The conditions determining a classical critical point r

duce to

~] f s /]m!T50 ~]2f s /]m2!T50. ~6.21!

On expanding the scaling functions in Eq.~6.20! these yield

052X0,02
0 zL1 j 2X1,01

0 L2b/n12X0,02
(4) UL4

c L2u/nzL

1e0e3X2,01
0 L (12D)/n1•••, ~6.22!

052X0,02
0 12X0,12

0 xL16 j 2X1,03
0 L2b/nzL

12X0,12
(4) UL4

c L2u/n1•••. ~6.23!

Solving these equations forxL andzL and using Eqs.~6.13!
and~6.14! for t̃ andm̃ finally yields the critical temperature
as
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tc~L !5@Tc
0~L !2Tc#/Tc

5c1L21/n@11c2L2u/n1 j 2c3L22b/n1•••#

~6.24!

and the canonical critical density as

rc
0~L !5rc@11 j 2b1L22b/n1b2L2(12a)/n

1b3L2(2b1u)/n1•••#, ~6.25!

where the leading amplitudes are given by

c152X0,02
0 /DtX0,12

0 and b152e1X1,01
0 /2X0,02

0 .

~6.26!

It is instructive to learn that the asymptotic behavior
rc

0(L) has the same form as exhibited by thek-loci and the
Q-loci evaluated atT5Tc : see Eqs.~3.13! and ~4.8!. The
data for the RPM, however, suggest that the two lead
corrections in Eq.~6.25! compete rather strongly so tha
rc

0(L) appears to approachrc nonmonotonically@22#.

VII. CONCLUSION

In this paper we have extended to finite systems
‘‘complete’’ scaling theory developed in Part I@11# for criti-
cal behavior in the thermodynamic limit that incorporat
pressure mixing in the scaling fields as well as the irrelev
corrections to scaling. The basic theory is set out in Sec. I
a grand canonical or (p,m,T) formulation: see Eqs.~2.1!,
~2.3!, and ~1.1!–~1.4!. The possibility of finite-size correc
tions in the scaling fieldsp̃, h̃, and t̃ @see Eq.~1.8!# has been
reviewed briefly in Sec. II B and, in Sec. II D, a fairly direc
route to detecting such a dependence—by studying num
cally m(Tc ,rc ;L)—is proposed.

Section III applied the theory to elucidate the near-critic
behavior of thek-loci, defined in the (r,T) plane by the
isothermal maxima of the modified susceptibilitie
x(T,r)/rk: see Fig. 1. The usefulness of thek-loci in esti-
mating the critical densityrc via simulations is demonstrate
for the hard-core square-well fluid in Sec. III B and Figs.
and 3. It also transpires that the value ofk which yields a
locus that approaches the critical point ‘‘most directly’’ pr
vides a reasonable estimate of the Yang-Yang ratioRm
@9–11# that, in turn, provides the most direct measure of
degree to which pressure enters the ordering fieldh̃. In this
way Fig. 1~b! provides rather clear evidence of a significa
ratio,Rm.0.26, in the restricted primitive model electrolyt
see Sec. III B.

The behavior of the basic moment ratioQL(T;^r&), as
defined~following Binder @23#! in Eq. ~1.9!, is the topic of
Sec. IV: see Figs. 4 and 5. In particular, the associatedQ-loci
~andQ(k)-loci! are determined in Sec. IV A~and Sec. IV B!:
see Eq.~4.8! @and Eq.~4.10!# and Fig. 6. Of especial interes
is the behavior ofQL(T;^r&) below Tc , within, up to, and
beyond the boundaries,r1(T) andr2(T), of the two-phase
region: see Figs. 7–9. For fixedT,Tc and large enough
system sizesL, exactnontrivial results have been found, a
6-21
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shown in Secs. IV C and IV D: in particular, the study of t
minima in QL(T,^r&) @see Fig. 9 and Eq.~4.38!# lays the
foundation for a precise method@28# of estimating@r1(T)
2r2(T)# and the coexistence curve diameterr̄(T) at higher
temperatures very close toTc .

Of remarkable value for estimatingTc for asymmetric
fluid models is the behavior ofQL evaluatedon the corre-
spondingQ-loci: see Fig. 10 and the asymptotic express
~5.4! and corresponding plots in Fig. 11. Likewise, the es
mation of the critical valueQc[Q`(Tc ;rc), described in
Sec. V B, is important for determining the universality cla
of criticality. Finally, in Sec. V C and Figs. 12 and 13, th
estimation of the critical exponentn for the highly asymmet-
ric restricted primitive model electrolyte has been describ
~confirming Ising character!.

We have not discussed finite-size effects near criticality
an (N,p,T) ensemble~in which the volume is allowed to
fluctuate!. This is an interesting and potentially useful tas
but we may first stress that the basic formulation—as emb
ied in Eqs. ~1.2!–~1.8! and ~2.1!–~2.9!—still provides the
appropriate foundation. However, sinceV[Ld now fluctu-
ates, the analysis must proceed along a rather different p
One may anticipate, nevertheless, that the general struc
of the temperature-dependent corrections will remain
io

t
ee

of

an

-
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te
-

n
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same although new terms may well appear and dominate
N dependence in certain regimes.

The issue of acanonicalor (r,T) formulation of critical-
ity with corrections to scalingand pressure mixing is taken
up in Sec. VI. The basic expression, Eq.~6.17!, for the sin-
gular part of the Helmholtz free energy is intrinsically mo
complex than the (p,m,T) scaling formulation, entailing an
infinite series of ‘‘improperly scaling’’ corrections. This for
mulation provides a basis for determining the asymptotics
the canonical critical points~of classical character! that can
be observed in (N,V,T) simulations: see Eqs.~6.24! and
~6.25!.

In summary, we believe that the theory developed h
and the applications illustrated constitute a solid foundat
for future computational studies of criticality that emplo
systems of finite size.

ACKNOWLEDGMENTS

The interest of Gerassimos Orkoulas and Erik Luijten a
their vital assistance in the computations reported has b
much appreciated. The support of the National Scie
Foundation~through Grant No. CHE 99-81772! has been
crucial.
of a
.

sk

to
sti-
is
of

ure
ible
ical

far
ood

ate
m-
th-

nt
@1# See, e.g., as a recent example, G. Orkoulas, A.Z. Panag
poulos, and M.E. Fisher, Phys. Rev. E61, 5930~2000!.

@2# M.E. Fisher inCritical Phenomena, Proceedings of the 51s
Enrico Fermi Summer School, Varenna, edited by M.S. Gr
~Academic Press, New York, 1971!.

@3# M.E. Fisher and M.N. Barber, Phys. Rev. Lett.28, 1516
~1972!.

@4# J.L. Cardy,Finite-Size Scaling~North Holland, Amsterdam,
1988!.

@5# V. Privman,Finite Size Scaling and Numerical Simulation
Statistical Systems~World Scientific, Singapore, 1990!.

@6# J.G. Brankov, D.M. Danchev, and N.S. Tonchev,Theory of
Critical Phenomena in Finite-size Systems: Scaling and Qu
tum Effects~World Scientific, Singapore, 2000!, Chap. 4.

@7# J. Zinn-Justin,Quantum Field Theory and Critical Phenom
ena, 3rd ed.~Clarendon Press, Oxford, 1996!, Chap. 36.

@8# See, e.g., G. Orkoulas, M.E. Fisher, and A.Z. Panagiotopou
Phys. Rev. E63, 051507~2001!.

@9# M.E. Fisher and G. Orkoulas, Phys. Rev. Lett.85, 696 ~2000!.
@10# G. Orkoulas, M.E. Fisher, and C. U¨ stün, J. Chem. Phys.113,

7530 ~2000!.
@11# Y.C. Kim, M.E. Fisher, and G. Orkoulas, Phys. Rev. E67,

061506 ~2003!. This paper is here denotedI and equations
appearing there are labeledI ~1.1!, I ~3.29!, . . . , etc.

@12# Y.C. Kim, Ph.D. thesis, University of Maryland, 2002. Th
work, which contains further details of the analyses presen
here, will be denotedK and equations therein will be refer
enced as, e.g.,K ~3.41!, etc. Note the remark in Ref.@31# below
concerning normalization of the finite-size scaling formulatio

@13# J.J. Rehr and N.D. Mermin, Phys. Rev. A8, 472 ~1973!.
@14# Y.C. Kim, M.E. Fisher, and M.C. Barbosa, J. Chem. Phys.115,

933 ~2001!.
to-

n

-

s,

d

.
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@24# E. Brézin and J. Zinn-Justin, Nucl. Phys. B257, 867 ~1985!.
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